Citation: Sun Quanhong, Li Zhi, Ma Nan. (NH4)2MoS4-Guided Self-Assembly of CdTe QDs and Control over Their Optical Properties and Cell Imaging[J]. Acta Chimica Sinica, ;2018, 76(1): 43-48. doi: 10.6023/A17090428 shu

(NH4)2MoS4-Guided Self-Assembly of CdTe QDs and Control over Their Optical Properties and Cell Imaging

  • Corresponding author: Ma Nan, nan.ma@suda.edu.cn
  • Received Date: 19 September 2017
    Available Online: 6 January 2017

    Fund Project: the National Natural Science Foundation of China 21175147the National Natural Science Foundation of China 91313302Project supported by the National Natural Science Foundation of China (Nos. 21175147, 91313302, 21475093), the National High Technology Research and Development Program of China (863 Program, No. 2014AA020518) and the Thousand Youth Talents Planthe National Natural Science Foundation of China 21475093the National High Technology Research and Development Program of China 863 Programthe National High Technology Research and Development Program of China 2014AA020518

Figures(9)

  • Conventionally, red shift of QD photoluminescence (PL) could be achieved by growing QDs to larger sizes using hydrothermal method, which is usually a very slow process. We synthesized green fluorescent CdTe quantum dots with GSH as the ligand and proved the successful synthesis of (NH4)2MoS4 by UV-Vis, X-Ray Diffraction, Raman spectroscopy. In the process of research, we found that (NH4)2MoS4 can change the wavelength of CdTe quantum dots under the condition of heating or at room temperature. Redshift of emission wavelength can change with the different ratio between (NH4)2MoS4and CdTe QDs. In this study, we report a rapid and convenient method to achieve red-shift of CdTe QD PL via (NH4)2MoS4-guided QD self-assembly. We show that the emission wavelength of CdTe QDs underwent a red-shift of more than 100 nm for 15 min at 100℃ in the presence of (NH4)2MoS4. At the same time, we conduct a experiment, which have no red-shift in the absence of (NH4)2MoS4 for 15 min at 100℃. This illustrates that the (NH4)2MoS4 plays an important role in CdTe QDs self-assembly. The red-shift of QD PL was also observed at room temperature but relatively slower. The formation of QD assembly was confirmed by gel electrophoresis, transmission electron microscopy, and X-ray photoelectron spectroscopy. The result of gel electrophoresis and transmission electron microscopy directly shows the self-assembly morphology of CdTe QDs and the change of size and shape. Self-assembly entity was proved to contain Mo and Cd by the X-ray photoelectron spectroscopy, which confirmed the connection between (NH4)2MoS4and CdTe QDs. A control experiment was conducted by replacing (NH4)2MoS4with Na2S for QD assembly, in that case no apparent change of emission wavelength was observed. These results reveal that MoS42- within (NH4)2MoS4 is crucial for self-assembly of CdTe QDs. Accordingly, we propose a reasonable model of (NH4)2MoS4-guided CdTe QD self-assembly. In this model, we consider the connection between a (NH4)2MoS4 and two CdTe QDs in ideal condition. With the increasing ratio of (NH4)2MoS4, much more connection between (NH4)2MoS4 and CdTe will be obtained. Assembling entity morphology changed with different cross-linking way. The resulting QD assembly was further applied to cell imaging experiments, demonstrating their potentials in this field.
  • 加载中
    1. [1]

      Ma, N.; Sargent, E. H.; Kelley, S. O. Nat. Nanotechnol. 2009, 4, 121.  doi: 10.1038/nnano.2008.373

    2. [2]

      Zhang, T.; Li, Z.; Sun, Q. H.; Ma, N. Chin. J. Anal. Chem. 44(12), 1840.

    3. [3]

      Arshad, A.; Chen, H. L.; Bai, X. L.; Xu, S. Y.; Wang, L. Y. Chin. J. Chem. 34(6), 576.  doi: 10.1002/cjoc.v34.6

    4. [4]

      Jiang, C.; Shen, Z.; Luo, C.; Lin, H.; Huang, Y.; Wang, Y.; Peng, H. Talanta 2016, 155, 14.  doi: 10.1016/j.talanta.2016.04.021

    5. [5]

      Huang, L.; Li, Z. C.; Huang, S. Q.; Peter, R.; Li, L. Acta Chim. Sinica 2017, 75, 300.
       

    6. [6]

      Shao, Y. B.; Yue, J. L.; Sun, S.; Xia, H. Chin. J. Chem. 2017, 35(1), 73.  doi: 10.1002/cjoc.v35.1

    7. [7]

      Cai, P.; Jia, Y.; Feng, X. Y.; Li, J.; Li, J. B. Chin. J. Chem. 2017, 35(6), 881.  doi: 10.1002/cjoc.v35.6

    8. [8]

      Kong, L. J.; Zhou, X. Y.; Fan, S. Y.; Li, Z. J.; Gu, Z. G. Acta Chim. Sinica 2016, 74, 620.
       

    9. [9]

      Dwarakanath, S.; Bruno, J. G.; Shastry, A.; Phillips, T.; John, A.; Kumar, A.; Stephenson, L. D. Biochem. Biophys. Res. Commun. 2004, 325, 739.  doi: 10.1016/j.bbrc.2004.10.099

    10. [10]

      Jaiswal, J. K.; Mattoussi, H.; Mauro, J. M.; Simon, S. M. Nat. Biotechnol. 2003, 21, 47.  doi: 10.1038/nbt767

    11. [11]

      Wei, W.; He, X. W.; Ma, N. Angew. Chem., Int. Ed. 2014, 53, 5573.  doi: 10.1002/anie.v53.22

    12. [12]

      He, X. W.; Gao, L.; Ma, N. Sci. Rep. 2013, 3, 2825.  doi: 10.1038/srep02825

    13. [13]

      Manzoor, K.; Johny, S.; Thomas, D.; Setua, S.; Menon, D.; Nair, S. Nat. Nanotechnol. 2009, 20, 065102.  doi: 10.1088/0957-4484/20/6/065102

    14. [14]

      Michalet, X.; Pinaud, F. F.; Bentolila, L. A.; Tsay, J. M.; Doose, S.; Li, J. J.; Sundaresan, G.; Wu, A. M.; Gambhir, S. S.; Weiss, S. Science 2005, 307, 538.  doi: 10.1126/science.1104274

    15. [15]

      Medintz, I. L.; Uyeda, H. T.; Goldman, E. R.; Mattoussi, H. Nat. Mater. 2005, 4, 435.  doi: 10.1038/nmat1390

    16. [16]

      Bagalkot, V.; Zhang, L.; Levy-Nissenbaum, E.; Jon, S. Y.; Kantoff, P.; Langer, R.; Farokhzad, O. C. Nano Lett. 2007, 7, 3065.  doi: 10.1021/nl071546n

    17. [17]

      Murray, C. B.; Kagan, C. R.; Bawendi, M. G. Annu. Rev. Mater. Sci. 2000, 30, 545.  doi: 10.1146/annurev.matsci.30.1.545

    18. [18]

      Burda, C.; Chen, X. B.; Narayanan, R.; EI-Sayed, M. A. Chem. Rev. 2005, 105, 1025.  doi: 10.1021/cr030063a

    19. [19]

      Grzelczak, M.; Vermant, J.; Furst, E. M.; Liz-Marzan, L. M. ACS Nano 2010, 4, 3591.  doi: 10.1021/nn100869j

    20. [20]

      Jones, M. R.; Osberg, K. D.; Macfarlane, R. J.; Langille, M. R.; Mirkin, C. A. Chem. Rev. 2011, 111, 3736.  doi: 10.1021/cr1004452

    21. [21]

      Deng, D.; Qu, L.; Li, Y.; Gu, Y. Langmuir 2013, 29, 10907.  doi: 10.1021/la401999r

    22. [22]

      Chen, H.; Liu, Y.; Lu, Y.; Wu, H.; Qian, H. J. Mater. Sci. 2014, 49, 4506.  doi: 10.1007/s10853-014-8149-8

    23. [23]

      An, L. M.; Yang, Y. Q.; Su, W. H.; Yi, J.; Liu, C. X.; Chao, K. F.; Zeng, Q. H. J. Nanosci. Nanotechnol. 2010, 10, 2099.  doi: 10.1166/jnn.2010.2080

    24. [24]

      Yue, D.; Qian, X.; Zhang, Z.; Kan, M.; Ren, M.; Zhao, Y. ACS Sustainable Chem. Eng. 2016, 4, 6653.  doi: 10.1021/acssuschemeng.6b01520

    25. [25]

      Zhang, C. L.; Ding, C. P.; Xiang, D. S.; Li, L.; Ji, X. H.; He, Z. K.; Xian, Y. Z. Chin. J. Chem. 2016, 34(3), 317.  doi: 10.1002/cjoc.v34.3

    26. [26]

      Li, Z.; He, X. W.; Luo, X. C.; Wang, L.; Ma, N. Anal. Chem. 2016, 88, 9355.  doi: 10.1021/acs.analchem.6b02864

    27. [27]

      Sapsford, K. E.; Pons, T.; Medintz, I. L.; Higashiya, S.; Brunel, F. M.; Dawson, P. E.; Mattoussi, H. J. Phys. Chem. C 2007, 111, 11528.  doi: 10.1021/jp073550t

    28. [28]

      Ji, X. B.; Yao, C. G.; Wan, Y.; Song, H. X.; Xin, P.; Cui, H. D.; Zheng, C. Y.; Deng, S. Y. Chin. J. Chem. 2016, 34(3), 331.  doi: 10.1002/cjoc.v34.3

    29. [29]

      Guo, Y.; Hu, Y.; Deng, Z. Chin. J. Chem. 2016, 34(3), 259.  doi: 10.1002/cjoc.v34.3

    30. [30]

      Huang, H.; Du, C.; Shi, H.; Feng, X.; Li, J.; Tan, Y.; Song, W. Part. Part. Syst. Char. 2015, 32, 72.  doi: 10.1002/ppsc.201400101

    31. [31]

      Chai, Y. M.; Zhao, H. J.; Liu, Y. Q.; Liu, C. G. Inorg. Chem. Ind. 2007, 39, 12.
       

  • 加载中
    1. [1]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    2. [2]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    3. [3]

      Ruoxi Sun Yiqian Xu Shaoru Rong Chunmiao Han Hui Xu . The Enchanting Collision of Light and Time Magic: Exploring the Footprints of Long Afterglow Lifetime. University Chemistry, 2024, 39(5): 90-97. doi: 10.3866/PKU.DXHX202310001

    4. [4]

      Xiaofei NIUKe WANGFengyan SONGShuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057

    5. [5]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    6. [6]

      Jianjun Liu Xue Yang Chi Zhang Xueyu Zhao Zhiwei Zhang Yongmei Chen Qinghong Xu Shao Jin . Preparation and Fluorescence Characterization of CdTe Semiconductor Quantum Dots. University Chemistry, 2024, 39(7): 307-315. doi: 10.3866/PKU.DXHX202311031

    7. [7]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    8. [8]

      Wenliang Wang Weina Wang Sufan Wang Tian Sheng Tao Zhou Nan Wei . “Schrödinger Equation – Approximate Models – Core Concepts – Simple Applications”: Constructing a Logical Framework and Knowledge Graph of Atom and Molecule Structures. University Chemistry, 2024, 39(8): 338-343. doi: 10.3866/PKU.DXHX202312084

    9. [9]

      Miaomiao He Zhiqing Ge Qiang Zhou Jiaqing He Hong Gong Lingling Li Pingping Zhu Wei Shao . Exploring the Fascinating Realm of Quantum Dots. University Chemistry, 2024, 39(6): 231-237. doi: 10.3866/PKU.DXHX202310040

    10. [10]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    11. [11]

      Junqiao Zhuo Xinchen Huang Qi Wang . Symbol Representation of the Packing-Filling Model of the Crystal Structure and Its Application. University Chemistry, 2024, 39(3): 70-77. doi: 10.3866/PKU.DXHX202311100

    12. [12]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    13. [13]

      Ruilin Han Xiaoqi Yan . Comparison of Multiple Function Methods for Fitting Surface Tension and Concentration Curves. University Chemistry, 2024, 39(7): 381-385. doi: 10.3866/PKU.DXHX202311023

    14. [14]

      Rui Li Jiayu Zhang Anyang Li . Two Levels of Understanding of Chemical Bonds: a Case of the Bonding Model of Hypervalent Molecules. University Chemistry, 2024, 39(2): 392-398. doi: 10.3866/PKU.DXHX202308051

    15. [15]

      Shuyu Liu Xiaomin Sun Bohan Song Gaofeng Zeng Bingbing Du Chongshen Guo Cong Wang Lei Wang . Design and Fabrication of Phospholipid-Vesicle-based Artificial Cells towards Biomedical Applications. University Chemistry, 2024, 39(11): 182-188. doi: 10.12461/PKU.DXHX202404113

    16. [16]

      Shipeng WANGShangyu XIELuxian LIANGXuehong WANGJie WEIDeqiang WANG . Piezoelectric effect of Mn, Bi co-doped sodium niobate for promoting cell proliferation and bacteriostasis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1919-1931. doi: 10.11862/CJIC.20240094

    17. [17]

      Peng GENGGuangcan XIANGWen ZHANGHaichuang LANShuzhang XIAO . Hollow copper sulfide loaded protoporphyrin for photothermal-sonodynamic therapy of cancer cells. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1903-1910. doi: 10.11862/CJIC.20240155

    18. [18]

      Zhen Shi Wei Jin Yuhang Sun Xu Li Liang Mao Xiaoyan Cai Zaizhu Lou . Interface charge separation in Cu2CoSnS4/ZnIn2S4 heterojunction for boosting photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100201-100201. doi: 10.1016/j.cjsc.2023.100201

    19. [19]

      Liang TANGJingfei NIKang XIAOXiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139

    20. [20]

      Fengqiao Bi Jun Wang Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069

Metrics
  • PDF Downloads(3)
  • Abstract views(1860)
  • HTML views(222)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return