Citation: Li Zhiwei, Zhong Jialiang, Chen Nannan, Xue Bing, Mi Hongyu. Template-Assisted Preparation and Lithium Storage Performance of Nitrogen Doped Porous Carbon Sheets[J]. Acta Chimica Sinica, ;2018, 76(3): 209-214. doi: 10.6023/A17090425 shu

Template-Assisted Preparation and Lithium Storage Performance of Nitrogen Doped Porous Carbon Sheets

  • Corresponding author: Mi Hongyu, mmihongyu@163.com
  • Received Date: 18 September 2017
    Available Online: 22 March 2018

    Fund Project: Project supported by the National Natural Science Foundation of China (No. 21563029) and the Natural Science Foundation of Xinjiang Uygur Autonomous Region (No. 2014211A015)the Natural Science Foundation of Xinjiang Uygur Autonomous Region 2014211A015the National Natural Science Foundation of China 21563029

Figures(8)

  • Nitrogen doped porous carbon sheets (NPCSs) having high lithium storage performance were successfully prepared by a template-assisted approach using magnesium oxide/melamine/polyethylene glycol (MgO/melamine/PEG) as raw materials. In a typical procedure, the precursor, which consisted of MgO, melamine and PEG in a mass ratio of 7:3:10, was carbonized at 700℃ for 3 h in a temperature-programmed tubular furnace under N2 flow with a heating rate of 5℃·min-1. The intermediate was immersed into 3 mol·L-1 HCl solution for several times to remove MgO. Subsequently, the sample was rinsed with water and ethanol until a neutral pH was obtained, and then dried at 80℃ in a vacuum oven. The sample was systematically characterized and analyzed by Fourier transform infrared spectrometer (FTIR), X-ray powder diffractometer (XRD), X-ray photoelectron spectrometer (XPS), scanning electron microscope (SEM), transmission electron microscope (TEM), cyclic voltammetry (CV), galvanostatic charge/discharge (GCD) and electrochemical impedance spectroscopy (EIS). The results indicated that NPCSs showed an interconnected porous carbon sheet networks, showing relatively high specific surface area (370.8 m2·g-1), hierarchical pore channels, and high nitrogen content (8.5 at%). Such a continuous porous structure could enhance the electron transport on three-dimensional direction, shorten the diffusion distance of lithium ions, enlarge the interface area between lithium ion and electrolyte, and provide the place for the accommodation of lithium ions. Additionally, high N-doping level in NPCSs could provide numerous activated sites for the intercalation and deintercalation of lithium ions, and enhance the electronic conductivity. Based on the unique structure, NPCSs electrode could exhibit high initial reversible specific capacities (after excluding the contribution of acetylene black, 914 mAh·g-1 at 100 mA·g-1) and good cycling stability (still remaining a specific capacity of 523 mAh·g-1 at 1000 mA·g-1 up to 300 cycles). Moreover, NPCSs displayed high rate capability with a reversible capacity of 355 mAh·g-1 at a current density of 3000 mA·g-1. Therefore, the NPCSs obtained are expectable to be widely used as anode material in lithium-ion batteries.
  • 加载中
    1. [1]

      Dunn, B.; Kamath, H.; Tarascon, J. M. Science 2011, 334, 928.  doi: 10.1126/science.1212741

    2. [2]

      Yoshino, A. Angew. Chem. Int. Ed. 2012, 51, 5798.  doi: 10.1002/anie.201105006

    3. [3]

      Zheng, Z.; Wu, Z. G.; Xiang, W.; Guo, X. D. Acta Chim. Sinica 2017, 75, 501.  doi: 10.11862/CJIC.2017.053

    4. [4]

      Lv, Z. Y.; Feng, R.; Zhao, J.; Fan, H.; Xu, D.; Wu, Q.; Yang, L. J.; Chen, Q.; Wang, X. Z.; Hu, Z. Acta Chim. Sinica 2015, 73, 1013.
       

    5. [5]

      Palacín, M. R. Chem. Soc. Rev. 2009, 38, 2565.  doi: 10.1039/b820555h

    6. [6]

      Li, H.; Wang, Z. X.; Chen, L. Q.; Huang, X. J. Adv. Mater. 2009, 21, 4593.  doi: 10.1002/adma.v21:45

    7. [7]

      Xu, Y. X.; Lin, Z. Y.; Zhong, X.; Papandrea, B.; Huang, Y.; Duan, X. F. Angew. Chem., Int. Ed. 2015, 54, 5345.  doi: 10.1002/anie.201500677

    8. [8]

      Ou, J. K.; Zhang, Y. Z.; Chen, L.; Zhao, Q.; Meng, Y.; Guo, Y.; Xiao, D. J. Mater. Chem. A 2015, 3, 6534.  doi: 10.1039/C4TA06614F

    9. [9]

      Du, J.; Lin, N.; Qian, Y. T. Acta Chim. Sinica 2017, 75, 147.  doi: 10.3969/j.issn.0253-2409.2017.02.003

    10. [10]

      Zhang, N.; Zhao, Q.; Han, X. P.; Yang, J. G.; Chen, J. Nanoscale 2014, 6, 2827.  doi: 10.1039/C3NR05523J

    11. [11]

      Zhu, X.; Ning, G. Q.; Ma, X. L.; Fan, Z. J.; Xu, C. G.; Gao, J. S.; Xu, C. M.; Wei, F. J. Mater. Chem. A 2013, 1, 14023.  doi: 10.1039/c3ta12824e

    12. [12]

      Etacheri, V.; Haik, O.; Goffer, Y.; Roberts, G. A.; Stefan, I. C.; Fasching, R.; Aurbach, D. Langmuir 2012, 28, 965.  doi: 10.1021/la203712s

    13. [13]

      Nan, D.; Huang, Z. Y.; Kang, F. Y.; Shen, W. C. New Carbon Materials 2016, 31, 393.
       

    14. [14]

      Bulusheva, L. G.; Arkhipov, V. E.; Fedorovskaya, E. O.; Zhang, S.; Kurenya, A. G.; Kanygin, M. A.; Asanov, I. P.; Tsygankova, A. R.; Chen, X. H.; Song, H. H.; Okotrub, A. V. J. Power Sources 2016, 311, 42.  doi: 10.1016/j.jpowsour.2016.02.036

    15. [15]

      Wen, L.; Liu, C. M.; Song, R. S.; Luo, H. Z.; Shi, Y.; Li, F.; Chen, H. M. Acta Chim. Sinica 2014, 72, 333.
       

    16. [16]

      Chen, M.; Yu, C.; Liu, S. H.; Fan, X. M.; Zhao, C. T.; Zhang, X.; Qiu, J. S. Nanoscale 2015, 7, 1791.  doi: 10.1039/C4NR05878J

    17. [17]

      Zhang, L. J.; Xia, G. L.; Guo, Z. P.; Sun, D. L.; Li, X. G.; Yu, X. B. J. Power Sources 2016, 324, 294.  doi: 10.1016/j.jpowsour.2016.05.057

    18. [18]

      Li, D. D.; Ding, L. X.; Chen, H. B.; Wang, S. Q.; Li, Z.; Zhu, M.; Wang, H. H. J. Mater. Chem. A 2014, 2, 16617.  doi: 10.1039/C4TA03281K

    19. [19]

      Roberts, A. D.; Wang, S. X.; Li, X.; Zhang, H. F. J. Mater. Chem. A 2014, 2, 17787.

    20. [20]

      Akiyama, T.; Zhu, C. Y. Green Chem. 2016, 18, 2106.  doi: 10.1039/C5GC02397A

    21. [21]

      Wang, C. Y.; Feng, L. L.; Li, W.; Zheng, J.; Tian, W. H.; Li, X. G. Solar Energy Mater. Solar Cells 2012, 105, 21.  doi: 10.1016/j.solmat.2012.05.031

    22. [22]

      Zhong, J. L.; Guo, F. J.; Mi, H. Y. Chinese J. Inorg. Chem. 2015, 31, 2128.
       

    23. [23]

      Zhang, X. J.; Zhu, G.; Wang, M.; Li, J. B.; Lu, T.; Pan, L. K. Carbon 2017, 116, 686.  doi: 10.1016/j.carbon.2017.02.057

    24. [24]

      Guo, N. N.; Li, M.; Wang, H.; Sun, X. K.; Wang, F.; Yang, R. RSC Adv. 2016, 6, 101372.  doi: 10.1039/C6RA22426A

    25. [25]

      Pumera, M. Energy Environ. Sci. 2011, 4, 668.  doi: 10.1039/C0EE00295J

    26. [26]

      You, L. J.; Zhang, Y. T.; Xu, S.; Guo, J.; Wang, C. C. ACS Appl. Mater. Interfaces 2014, 6, 15179.  doi: 10.1021/am503421z

    27. [27]

      Huang, C. W.; Wu, Y. T.; Hu, C. C.; Li, Y. Y. J. Power Sources 2007, 172, 460.  doi: 10.1016/j.jpowsour.2007.07.009

    28. [28]

      Wang, S. X.; Chen, S. L.; Wei, Q. L.; Zhang, X. K.; Wong, S. Y.; Sun, S. H.; Li, X. Chem. Mater. 2015, 27, 336.  doi: 10.1021/cm504042s

    29. [29]

      Jeong, H. M.; Lee, J. W.; Shin, W. H.; Choi, Y. J.; Shin, H. J.; Kang, J. K.; Choi, J. W. Nano Lett. 2011, 11, 2472.  doi: 10.1021/nl2009058

    30. [30]

      Li, Z.; Xu, Z. W.; Tan, X. H.; Wang, H. L.; Holt, C. M. B.; Stephenson, T.; Olsen, B. C.; Mitlin, D. Energy Environ. Sci. 2013, 6, 871.  doi: 10.1039/c2ee23599d

    31. [31]

      Wang, H. G.; Wang, Y. H.; Li, Y. H.; Wan, Y. C.; Duan, Q. Carbon 2015, 82, 116.  doi: 10.1016/j.carbon.2014.10.041

    32. [32]

      Sui, Z. Y.; Wang, C. Y.; Yang, Q. S.; Shu, K. W.; Liu, Y. W.; Han, B. H.; Wallace, G. G. J. Mater. Chem. A 2015, 3, 18229.  doi: 10.1039/C5TA05759K

    33. [33]

      Chang, K.; Chen, W. X. ACS Nano 2011, 5, 4720.  doi: 10.1021/nn200659w

    34. [34]

      Etacheri, V.; Hong, C. N.; Pol, V. G. Environ. Sci. Technol. 2015, 49, 11191.  doi: 10.1021/acs.est.5b01896

    35. [35]

      Zhu, C. Y.; Akiyama, T. Green Chem. 2015, 18, 2106.
       

    36. [36]

      Song, R.; Song, H. H.; Zhou, J. S.; Chen, X. T.; Wu, B.; Yang, H. Y. J. Mater. Chem. 2012, 22, 12369.  doi: 10.1039/c2jm31910a

    37. [37]

      Ou, J. K.; Yang, L.; Zhang, Y. Z.; Chen, L.; Guo, Y.; Xiao, D. Chinese J. Chem. 2015, 33, 1293.  doi: 10.1002/cjoc.v33.11

    38. [38]

      Qie, L.; Chen, W. M.; Wang, Z. H.; Shao, Q. G.; Li, X.; Yuan, L. X.; Hu, X. L.; Zhang, W. X.; Huang, Y. H. Adv. Mater. 2012, 24, 2047.  doi: 10.1002/adma.201104634

    39. [39]

      He, B.; Li, W. C.; Lu, A. H. J. Mater. Chem. A 2015, 3, 579.  doi: 10.1039/C4TA05056H

    40. [40]

      Zhang, W. L.; Yin, J.; Lin, Z. Q.; Lin, H. B.; Lu, H. Y.; Wang, Y.; Huang, W. M. Electrochim. Acta 2015, 176, 1136.  doi: 10.1016/j.electacta.2015.08.001

  • 加载中
    1. [1]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    2. [2]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    3. [3]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    4. [4]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    5. [5]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    6. [6]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    7. [7]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    8. [8]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    9. [9]

      Zhihong LUOYan SHIJinyu ANDeyi ZHENGLong LIQuansheng OUYANGBin SHIJiaojing SHAO . Two-dimensional silica-modified polyethylene oxide solid polymer electrolyte to enhance the performance of lithium-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1005-1014. doi: 10.11862/CJIC.20230444

    10. [10]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

    11. [11]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    12. [12]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    13. [13]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    14. [14]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    15. [15]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    16. [16]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    17. [17]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    18. [18]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    19. [19]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    20. [20]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

Metrics
  • PDF Downloads(4)
  • Abstract views(1035)
  • HTML views(225)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return