Citation: Wu Miao Miao, Liu Shiqiang, Chen Hao, Wei Xuehu, Li Mingyang, Yang Zhibin, Ma Xiangdong. Superhalogen Substitutions in Cubic Halide Perovskite Materials for Solar Cells:A First-principles Investigation[J]. Acta Chimica Sinica, ;2018, 76(1): 49-54. doi: 10.6023/A17090406 shu

Superhalogen Substitutions in Cubic Halide Perovskite Materials for Solar Cells:A First-principles Investigation

  • Corresponding author: Wu Miao Miao, miaomwu@cumtb.edu.cn Yang Zhibin, yangzhibin0001@163.com
  • Received Date: 4 September 2017
    Available Online: 20 January 2017

    Fund Project: the National Training Program of Innovation and Entrepreneurship for Undergraduates C201604020the National Natural Science Foundation of China 11404395the Fundamental Research Funds for the Central Universities 2013QJ01Project supported by the National Key Research and Development Program of China (No. 2017YFB0601904), the National Natural Science Foundation of China (No. 11404395), the Fundamental Research Funds for the Central Universities (No. 2013QJ01) and the National Training Program of Innovation and Entrepreneurship for Undergraduates (No. C201604020)the National Key Research and Development Program of China 2017YFB0601904

Figures(7)

  • Halide perovskite (ABC3) solar cell has received a lot of attentions due to its excellent photoelectronic properties. It has been proven to be an effective way to modify halide perovskite materials' bandgap by replacing A or B ions with other equivalent ions. However, C ions have much fewer choices and are limited to halogen anions or pseudohalides anions. We designed a series of new cubic perovskite structures through substituting C anions by superhalogen clusters anions (BeX3-, MgX3-, BX4-, AlX4-, SiX5-, PX6-, X=F, Cl), and studied their structures and properties in first-principles way. Calculations were performed by using the Vienna ab initio simulation package (VASP) based on density functional theory. The DOS (Density of States) and bandgaps were calculated to analyze properties of the new perovskite structures. The results show that BeX3-, MgX3- (X=F, Cl) and SiCl5- could not remain its structure which means these three clusters are not superhalogen anions anymore after doping. The size and symmetry of superhalogen anions have influences on the structures of doped perovskites. The superhalogen anion whose symmetry is higher and size is closed to I- ion induces less distortions to doped perovskite structures. Comparing to the VBM (Valence Band Maximum) and CBM (Conduction Band Minimum) of CsPbI3, superhalogen anions substitutions could change the compositions of CBM and VBM and bandgaps. The bandgaps of superhalogen anions partial substitutions in halide perovskite become smaller compared to structures with superhalogen anions substituting completely. We demonstrate that the CsPb(PCl6)3, with a direct-bandgap of 1.58 eV located at M(0, 0.5, 0.5) point, could be a potential candidate material for solar cells. Its CBM mainly is dominated by Cl 3p states, P 3s states and Pb 6p states. The other doped perovskites with wide bandgaps may have potential applications in transistors or memristors. We hope that these results could provide theoretical guidance for synthesis of new perovskite materials for solar cells.
  • 加载中
    1. [1]

      Guo, X. D.; Niu, G. D.; Wang, L. D. Acta Chim. Sinica 2015, 73, 211.  doi: 10.3866/PKU.WHXB201412231

    2. [2]

      Wang, N. N.; Si, J. J.; Jin, Y. Z.; Wang, J. P.; Huang, W. Acta Chim. Sinica 2015, 73, 171.
       

    3. [3]

      Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. J. Am. Chem. Soc. 2009, 131, 6050.  doi: 10.1021/ja809598r

    4. [4]

      Green, M. A.; Ho-Baillie, A.; Snaith, H. J. Nat. Photon. 2014, 8, 506.  doi: 10.1038/nphoton.2014.134

    5. [5]

      Jeon, N. J.; Noh, J. H.; Kim, Y. C.; Yang, W. S.; Ryu, S. C.; Seok, S, I. Nat. Mater. 2014, 13, 897.  doi: 10.1038/nmat4014

    6. [6]

      Kim, H. S.; Lee, C. R.; Im, J. H.; Lee, K. B.; Moehl, T.; Marchioro, A.; Moon, S. J.; Humphry-Baker, R.; Yum, J. H.; Moser, J. E.; Gr tzel, M.; Park, N. G. Sci. Rep. 2012, 2, 591.  doi: 10.1038/srep00591

    7. [7]

      Tang, H.; He, S. S.; Peng, C. W. Nanoscale Res. Lett. 2017, 12, 410.  doi: 10.1186/s11671-017-2187-5

    8. [8]

      Ganose, A. M.; Savory, C. N.; Scanlon, D. O. J. Phys. Chem. Lett. 2015, 6, 4594.  doi: 10.1021/acs.jpclett.5b02177

    9. [9]

      Jiang, Q. L.; Rebollar, D.; Gong, J.; Piacentino, E. L.; Zheng, C.; Xu, T. Angew. Chem., Int. Ed. 2015, 54, 7617.  doi: 10.1002/anie.201503038

    10. [10]

      Umeyama, D.; Lin, Y.; Karunadasa, H. I. Chem. Mater. 2016, 28, 3241.  doi: 10.1021/acs.chemmater.6b01147

    11. [11]

      Xiao, Z. W.; Meng, W. W.; Saparov, B.; Duan, H. S.; Wang, C. L.; Feng, C. B.; Liao, W. Q.; Ke, W, J.; Zhao, D. W.; Wang, J. B.; Mitzi, D. B.; Yan, Y. F. J. Phys. Chem. Lett. 2016, 7, 1213.  doi: 10.1021/acs.jpclett.6b00248

    12. [12]

      Hendon, C. H.; Yang, R. X.; Burton, L. A.; Walsh, A. J. Mater. Chem. A 2015, 3, 9067.  doi: 10.1039/C4TA05284F

    13. [13]

      Nagane, S.; Bansode, U.; Game, O.; Chhatre, S.; Ogale, S. Chem. Commun. 2014, 50, 9741.  doi: 10.1039/C4CC04537H

    14. [14]

      Yao, Q. S.; Fang, H.; Deng, K. M; Kan, E.; Jena, P. Nanoscale 2016, 8, 17836.  doi: 10.1039/C6NR05573G

    15. [15]

      Fang, H.; Jena, P. J. Phys. Chem. Lett. 2016, 7, 1596.  doi: 10.1021/acs.jpclett.6b00435

    16. [16]

      Andersen, T.; Haugen, H. K.; Hotop, H. J. Phys. Chem. Ref. Data. 1999, 28, 1511.  doi: 10.1063/1.556047

    17. [17]

      Gutsev, G. L. Chem. Phys. 1981, 56, 277.  doi: 10.1016/0301-0104(81)80150-4

    18. [18]

      Gutsev, G. L.; Boldyrev, A. I. Russ. Chem. Rev. 1987, 56, 519.  doi: 10.1070/RC1987v056n06ABEH003287

    19. [19]

      Prigogine, I.; Rice, S. A. The Theoretical Investigation of the Electron Affinity of Chemical Compounds, Vol. 61, John Wiley Sons, Inc., New York, 2007, pp. 169~221.

    20. [20]

      Gutsev, G. L.; Boldyrev, A. I. J. Phys. Chem. 1990, 94, 2256.  doi: 10.1021/j100369a012

    21. [21]

      Gutsev, G. L.; Boldyrev, A. I. Chem. Phys. Lett. 1984, 108, 250.  doi: 10.1016/0009-2614(84)87059-1

    22. [22]

      Marchaj, M.; Freza, S.; Skurski, P. J. Phys. Chem. A 2012, 116, 1966.  doi: 10.1021/jp300251t

    23. [23]

      Marchaj, M.; Freza, S.; Skurski, P. Chem. Phys. Lett. 2014, 612, 172.  doi: 10.1016/j.cplett.2014.08.021

    24. [24]

      Srivastava, A. K.; Misra, N. Mol. Phys. 2015, 113, 8, 866.

    25. [25]

      Srivastava, A. K.; Misra, N. Polyhedron 2015, 102, 711.  doi: 10.1016/j.poly.2015.09.072

    26. [26]

      Anusiewicz, I.; Sobczyk, M.; Dąbkowska, I.; Skurski, P. Chem. Phys. 2003, 291, 171.  doi: 10.1016/S0301-0104(03)00208-8

    27. [27]

      Sikorska, C.; Smuczyńska, S.; Skurski, P.; Anusiewicz, I. Inorg. Chem. 2008, 47, 7348.  doi: 10.1021/ic800863z

    28. [28]

      Furuhashi, K.; Habasaki, J.; Okada, I. Mol. Phys. 1986, 59, 1329.  doi: 10.1080/00268978600102761

    29. [29]

      Stadler, R.; Wolf, W.; Podloucky, R.; Kresse, G.; Furthmüller, J.; Hafner, J. Phys. Rev. B 1996, 54, 1729.
       

    30. [30]

      Paier, J.; Marsman, M.; Hummer, K.; Kresse, G.; Gerber, I. C.; Ángyán, J. G. J. Chem. Phys. 2006, 124, 154709.  doi: 10.1063/1.2187006

    31. [31]

      Liu, G.; Liu, S. B.; Xu, B.; Ouyang, C. Y.; Song, H. Y. J. Appl. Phys. 2015, 112, 666.
       

    32. [32]

      Even, J.; Pedesseau, L.; Jancu, J. M.; Katan, C. J. Phys. Chem. Lett. 2013, 4, 2999.  doi: 10.1021/jz401532q

    33. [33]

      Mosconi, E.; Amat, A.; Nazeeruddin, M. K.; Gr tzel, M.; De Angelis, F. J. Phys. Chem. C 2013, 117, 13902.  doi: 10.1021/jp4048659

    34. [34]

      Zhao, Z. G.; Lu, X. Q.; Li, K.; Wei, S. X.; Liu, X. F.; Niu, K.; Guo, W. Y. Acta Chim. Sinica 2016, 74, 1003.
       

    35. [35]

      Zhao, Z. G.; Niu, Y. Q.; Zhao, Y.; Song, Q. H.; Xin, L.; Lu, X. Q. Acta Chim. Sinica 2016, 74, 689.  doi: 10.3969/j.issn.0253-2409.2016.06.008

  • 加载中
    1. [1]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    2. [2]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    3. [3]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    4. [4]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    5. [5]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    6. [6]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    7. [7]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    8. [8]

      Xinxin JINGWeiduo WANGHesu MOPeng TANZhigang CHENZhengying WULinbing SUN . Research progress on photothermal materials and their application in solar desalination. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1033-1064. doi: 10.11862/CJIC.20230371

    9. [9]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    10. [10]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    11. [11]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

    12. [12]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    13. [13]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    14. [14]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    15. [15]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    16. [16]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    17. [17]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    18. [18]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    19. [19]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    20. [20]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

Metrics
  • PDF Downloads(26)
  • Abstract views(2233)
  • HTML views(407)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return