Citation: Yang Limin, Liu Bo, Li Na, Tang Bo. Fluorescent Nanoprobe for Detection and Imaging of Nucleic Acid Molecules[J]. Acta Chimica Sinica, ;2017, 75(11): 1047-1060. doi: 10.6023/A17080353 shu

Fluorescent Nanoprobe for Detection and Imaging of Nucleic Acid Molecules

  • Corresponding author: Li Na, lina@sdnu.edu.cn Tang Bo, tangb@sdnu.edu.cn
  • Received Date: 3 August 2017
    Available Online: 18 November 2017

    Fund Project: the National Natural Science Foundation of China 21535004the National Natural Science Foundation of China 21505087Project supported by the 973 Program (No. 2013CB933800), the National Natural Science Foundation of China (Nos. 21390411, 21535004, 21422505, 21375081, 21505087), and the Natural Science Foundation for Distinguished Young Scholars of Shandong Province (No. JQ201503)the National Natural Science Foundation of China 21375081the Natural Science Foundation for Distinguished Young Scholars of Shandong Province JQ201503the National Natural Science Foundation of China 21390411the National Natural Science Foundation of China 21422505the 973 Program 2013CB933800

Figures(15)

  • Nucleic acids, including deoxyribonucleic acid (DNA) and ribonucleic acid (RNA), play important roles in normal or abnormal life activities. DNA is an important genetic material and carrier of genetic information. It plays an important role in cell division, biological development, mutation, cancer, etc. RNA includes mRNA, tRNA, microRNA (miRNA) and small RNA. Tumor-associated mRNA has been widely used as a specific marker to assess the migration of tumor cells, and its expression level is related to the tumor burden and malignant progression. MiRNA is a non-coding small molecule RNA that regulates at least 30% of the genes. MiRNA is involved in most of the biological process, such as proliferation, differentiation, senescence, migration and apoptosis. The abnormal expression of DNA, mRNA and miRNA is closely associated with the occurrence and development of multiple diseases. Therefore, developing accurate and effective methods for detecting nucleic acid molecules is of great significance for studying the function of nucleic acid regulation and achieving the early detection and treatment of diseases. Fluorescence detection method and imaging technology provide powerful tools for real-time and accurately detecting nucleic acid molecules due to their high sensitivity and temporal resolution. Fluorescent nanoprobe has many advantages such as good biocompatibility, good solubility and so on. It has been widely used in the detection of nucleic acid molecules for further understanding the roles of nucleic acid in many diseases. In this review, we have showed the roles of various nucleic acid molecules in life activities and illustrated the advances in the development of fluorescent nanoprobe for detection of disease-related DNA, mRNA and miRNA in live cells and in vivo in recent years. The preparation of these nanoprobe, detection mechanism and imaging application were also presented. Finally, the challenge and future development of constructing new fluorescent nanoprobe for nucleic acids detection were proposed.
  • 加载中
    1. [1]

      Jackson, S. P.; Bartek, J. Nature 2009, 461, 1071.  doi: 10.1038/nature08467

    2. [2]

      Anker, P.; Mulcahy, H.; Chen, X. Q.; Stroun, M. Cancer Metastasis Rev. 1999, 18, 65.  doi: 10.1023/A:1006260319913

    3. [3]

      Hanahan, D.; Weinberg, R. A. Cell 2000, 100, 57.  doi: 10.1016/S0092-8674(00)81683-9

    4. [4]

      Zimmerman, A. L.; Wu, S. Cancer Lett. 2011, 300, 10.  doi: 10.1016/j.canlet.2010.09.019

    5. [5]

      Rooij, E. v.; Olson, E. N. Nat. Rev. Drug Discov. 2012, 11, 860.  doi: 10.1038/nrd3864

    6. [6]

      Pavlov, V.; Shlyahovsky, B.; Willner, I. J. Am. Chem. Soc. 2005, 127, 6522.  doi: 10.1021/ja050678k

    7. [7]

      Hou, T.; Li, W.; Liu, X.; Li, F. Anal. Chem. 2015, 87, 11368.  doi: 10.1021/acs.analchem.5b02790

    8. [8]

      Liu, H.; Li, L.; Duan, L.; Wang, X.; Xie, Y.; Tong, L.; Wang, Q.; Tang, B. Anal. Chem. 2013, 85, 7941.  doi: 10.1021/ac401715k

    9. [9]

      Ge, L.; Wang, W.; Hou, T.; Li, F. Biosens. Bioelectron. 2016, 77, 220.  doi: 10.1016/j.bios.2015.09.041

    10. [10]

      Tian, H.; Sun, Y.; Liu, C.; Duan, X.; Tang, W.; Li, Z. Anal. Chem. 2016, 88, 11384.  doi: 10.1021/acs.analchem.6b01225

    11. [11]

      Lytton-Jean, A. K. R.; Han, M. S.; Mirkin, C. A. Anal. Chem. 2007, 79, 6037.  doi: 10.1021/ac070635h

    12. [12]

      Song, J.; Yang, Q.; Lv, F.; Liu, L.; Wang, S. ACS Appl. Mater. Interfaces 2012, 4, 2885.  doi: 10.1021/am300830r

    13. [13]

      Yu, Z.; Sun, Q.; Pan, W.; Li, N.; Tang, B. ACS Nano 2015, 9, 11064.  doi: 10.1021/acsnano.5b04501

    14. [14]

      Yang, L.; Li, N.; Pan, W.; Yu, Z.; Tang, B. Anal. Chem. 2015, 87, 3678.  doi: 10.1021/ac503975x

    15. [15]

      Yang, R.; Jin, J.; Chen, Y.; Shao, N.; Kang, H.; Xiao, Z.; Tang, Z.; Wu, Y.; Zhu, Z.; Tan, W. J. Am. Chem. Soc. 2008, 130, 8351.  doi: 10.1021/ja800604z

    16. [16]

      Li, X.; Wang, Y.; Zhang, X.; Zhao, Y.; Liu, C.; Li, Z. Acta Chim. Sinica 2014, 72, 395(in Chinese).
       

    17. [17]

      Bao, H.; Jia, C.; Zhou, Z.; Jin, Q.; Zhao, J. Acta Chim. Sinica 2009, 67, 2144(in Chinese).  doi: 10.3321/j.issn:0567-7351.2009.18.015
       

    18. [18]

      Zeng, G.; Xiang, D.; He, Z. Acta Chim. Sinica 2011, 69, 1450. (in Chinese).
       

    19. [19]

      Deng, H.; Wang, G.; Zhu, B.; Zhu, L.; Wang, D.; Zhuang, Y.; Zhu, X. Acta Chim. Sinica 2012, 70, 2507(in Chinese).  doi: 10.3866/PKU.WHXB201209264
       

    20. [20]

      Ge, L.; Sun, X.; Hong, Q.; Li, F. ACS Appl. Mater. Interfaces 2017, 9, 13102.  doi: 10.1021/acsami.7b03198

    21. [21]

      Liu, X.; Aizen, R.; Freeman, R.; Yehezkeli, O.; Willner, I. ACS Nano 2012, 6, 3553.  doi: 10.1021/nn300598q

    22. [22]

      Song, S.; Liang, Z.; Zhang, J.; Wang, L.; Li, G.; Fan, C. Angew. Chem. Int. Ed. 2009, 48, 8670.  doi: 10.1002/anie.v48:46

    23. [23]

      He, S.; Song, B.; Li, D.; Zhu. C.; Qi, W.; Wen, Y.; Wang, L.; Song, S.; Fang, H.; Fan, C. Adv. Funct. Mater. 2010, 20, 453.  doi: 10.1002/adfm.v20:3

    24. [24]

      Liu, X.; Wang, F.; Aizen, R.; Yehezkeli, O.; Willner, I. J. Am. Chem. Soc. 2013, 135, 11832.  doi: 10.1021/ja403485r

    25. [25]

      Parvin, N.; Jin, Q.; Wei, Y.; Yu, R.; Zheng, B.; Huang, L.; Zhang, Y.; Wang, L.; Zhang, H.; Gao, M.; Zhao, H.; Hu, W.; Li, Y.; Wang, D. Adv. Mater. 2017, 29, 1606755.  doi: 10.1002/adma.201606755

    26. [26]

      Zhu, X.; Zhou, X.; Xing, D. Chem. Eur. J. 2013, 19, 5487.  doi: 10.1002/chem.201204605

    27. [27]

      Lu, Z.; Zhang, L.; Deng, Y.; Li, S.; He, N. Nanoscale 2012, 4, 5840.  doi: 10.1039/c2nr31497e

    28. [28]

      Tu, Y.; Wu, P.; Zhang, H.; Cai, C. Chem. Commun. 2012, 48, 10718.  doi: 10.1039/c2cc35564g

    29. [29]

      Tu, Y.; Li, W.; Wu, P.; Zhang, H.; Cai, C. Anal. Chem. 2013, 85, 2536.  doi: 10.1021/ac303772m

    30. [30]

      Yang, L.; Liu, C.; Ren, W.; Li, Z. ACS Appl. Mater. Interfaces 2012, 4, 6450.  doi: 10.1021/am302268t

    31. [31]

      Wang, X.-P.; Yin, B.; Ye, B.-C. RSC Adv. 2013, 3, 8633.  doi: 10.1039/c3ra23296d

    32. [32]

      Degliangeli, F.; Kshirsagar, P.; Brunetti, V.; Pompa, P. P.; Fiammengo, R. J. Am. Chem. Soc. 2014, 136, 2264.  doi: 10.1021/ja412152x

    33. [33]

      Liu, H.; Li, L.; Wang, Q.; Duan, L.; Tang, B. Anal. Chem. 2014, 86, 5487.  doi: 10.1021/ac500752t

    34. [34]

      Wang, W.; Kong, T.; Zhang, D.; Zhang, J.; Cheng, G. Anal. Chem. 2015, 87, 10822.  doi: 10.1021/acs.analchem.5b01930

    35. [35]

      Li, W.; Hou, T.; Wu, M.; Li, F. Talanta 2016, 148, 116.  doi: 10.1016/j.talanta.2015.10.078

    36. [36]

      Zhang, H.; Wang, Y.; Zhao, D.; Zeng, D.; Xia, J.; Aldalbahi, A.; Wang, C.; San, L.; Fan C.; Zuo, X.; Mi, X. ACS Appl. Mater. Interfaces 2015, 7, 16152.  doi: 10.1021/acsami.5b04773

    37. [37]

      Cui, L.; Lin, X.; Lin, N.; Song, Y.; Zhu, Z.; Chen, X.; Yang, C. J. Chem. Commun. 2012, 48, 194.  doi: 10.1039/C1CC15412E

    38. [38]

      Dong, H.; Zhang, J.; Ju, H.; Lu, H.; Wang, S.; Jin, S.; Hao, K.; Du, H.; Zhang, X. Anal. Chem. 2012, 84, 4587.  doi: 10.1021/ac300721u

    39. [39]

      Dong, H.; Lei, J.; Ju, H.; Zhi, F.; Wang, H.; Guo, W.; Zhu, Z.; Yan, F. Angew. Chem., Int. Ed. 2012, 51, 4607.  doi: 10.1002/anie.201108302

    40. [40]

      Wu, Y.; Han, J.; Xue, P.; Xu, R.; Kang, Y. Nanoscale 2015, 7, 1753.  doi: 10.1039/C4NR05447D

    41. [41]

      Zhang, P.; He, Z.; Wang, C.; Chen, J.; Zhao, J.; Zhu, X.; Li, C.-Z.; Min, Q.; Zhu, J.-J. ACS Nano 2015, 9, 789.  doi: 10.1021/nn506309d

    42. [42]

      Li, S.; Xu, L.; Ma, W.; Wu, X.; Sun, M.; Kuang, H.; Wang, L.; Kotov, N. A.; Xu, C. J. Am. Chem. Soc. 2016, 138, 306.  doi: 10.1021/jacs.5b10309

    43. [43]

      Min, X.; Zhang, M.; Huang, F.; Lou, X.; Xia, F. ACS Appl. Mater. Interfaces 2016, 8, 8998.  doi: 10.1021/acsami.6b01581

    44. [44]

      Li, J.; Li, D.; Yuan, R.; Xiang, Y. ACS Appl. Mater. Interfaces 2017, 9, 5717.  doi: 10.1021/acsami.6b13073

    45. [45]

      Zhang, Z.; Wang, Y.; Zhang, N.; Zhang, S. Chem. Sci. 2016, 7, 4184.  doi: 10.1039/C6SC00694A

    46. [46]

      Li, L.; Feng, J.; Liu, H.; Li, Q.; Tong, L.; Tang, B. Chem. Sci. 2016, 7, 1940.  doi: 10.1039/C5SC03909F

    47. [47]

      Choi, C. K. K.; Li, J.; Wei, K.; Xu, Y. J.; Ho, L. W. C.; Zhu, M.; To, K. K. W.; Choi, C. H. J.; Bian, L. J. Am. Chem. Soc. 2015, 137, 7337.  doi: 10.1021/jacs.5b01457

    48. [48]

      Li, S.; Xu, L.; Sun, M.; Wu, X.; Liu, L.; Kuang, H.; Xu, C. Adv. Mater. 2017, 29, 1606086.  doi: 10.1002/adma.v29.19

    49. [49]

      Lu, Q.; Ericson, D.; Song, Y.; Zhu, C.; Ye, R.; Liu, S.; Spernyak, J. A.; Du, D.; Li, H.; Wu, Y.; Lin, Y. ACS Appl. Mater. Interfaces 2017, 9, 23325.  doi: 10.1021/acsami.6b15387

    50. [50]

      Ryoo, S.-R.; Lee, J.; Yeo, J.; Na, H. K.; Kim, Y.-K.; Jang, H.; Lee, J. H.; Han, S. W.; Lee, Y.; Kim, V. N.; Min, D.-H. ACS Nano 2013, 7, 5882.  doi: 10.1021/nn401183s

    51. [51]

      Prigodich, A. E.; Seferos, D. S.; Massich, M. D.; Giljohann, D. A.; Lane, B. C.; Mirkin, C. A. ACS Nano 2009, 3, 2147.  doi: 10.1021/nn9003814

    52. [52]

      Jayagopal, A.; Halfpenny, K. C.; Perez, J. W.; Wright, D. W. J. Am. Chem. Soc. 2010, 132, 9789.  doi: 10.1021/ja102585v

    53. [53]

      Yang, Y.; Huang, J.; Yang, X.; Quan, K.; Wang, H.; Ying, L.; Xie, N.; Ou, M.; Wang, K. J. Am. Chem. Soc. 2015, 137, 8340.  doi: 10.1021/jacs.5b04007

    54. [54]

      Chen, T.; Wu, C. S.; Jimenez, E.; Zhu, Z.; Dajac, J. G.; You, M.; Han, D.; Zhang, X.; Tan, W. Angew. Chem. Int. Ed. 2013, 52, 2012.  doi: 10.1002/anie.v52.7

    55. [55]

      Pan, W.; Yang, H.; Zhang, T.; Li, Y.; Li, N.; Tang, B. Anal. Chem. 2013, 85, 6930.  doi: 10.1021/ac401405n

    56. [56]

      Li, N.; Yang, H.; Pan, W.; Diao, W.; Tang, B. Chem. Commun. 2014, 50, 7473.  doi: 10.1039/C4CC01009D

    57. [57]

      Xie, N.; Huang, J.; Yang, X.; Yang, Y.; Quan, K.; Wang, H.; Ying, L.; Ou, M.; Wang, K. Chem. Commun. 2016, 52, 2346.  doi: 10.1039/C5CC09980C

    58. [58]

      Ou, M.; Huang, J.; Yang, X.; Quan, K.; Yang, Y.; Xie, N.; Wang, K. Chem. Sci. 2017, 8, 668.  doi: 10.1039/C6SC03162E

    59. [59]

      Wu, Z.; Liu, G.-Q.; Yang, X.-L.; Jiang, J.-H. J. Am. Chem. Soc. 2015, 137, 6829.  doi: 10.1021/jacs.5b01778

    60. [60]

      Shi, J.; Zhou, M.; Gong, A.; Li, Q.; Wu, Q.; Cheng, G. J.; Yang, M.; Sun, Y. Anal. Chem. 2016, 88, 1979.  doi: 10.1021/acs.analchem.5b03689

    61. [61]

      Xie, N.; Huang, J.; Yang, X.; Yang, Y.; Quan, K.; Ou, M.; Fang, H.; Wang, K. ACS Sens. 2016, 1, 1445.  doi: 10.1021/acssensors.6b00593

    62. [62]

      He, L.; Lu, D.-Q.; Liang, H.; Xie, S.; Luo, C.; Hu, M.; Xu, L.; Zhang, X.; Tan, W. ACS Nano 2017, 11, 4060.  doi: 10.1021/acsnano.7b00725

    63. [63]

      He, D.; He, X.; Yang, X.; Li, H.-W. Chem. Sci. 2017, 8, 2832.  doi: 10.1039/C6SC04633A

    64. [64]

      Zhang, R.; Gao, S.; Wang, Z.; Han, D.; Liu, L.; Ma, Q.; Tan, W.; Tian, J.; Chen, X. Adv. Funct. Mater. 2017, 27, 1701027.  doi: 10.1002/adfm.v27.31

    65. [65]

      Qiao, G.; Gao, Y.; Li, N.; Yu, Z.; Zhuo, L.; Tang, B. Chem. Eur. J. 2011, 17, 11210.  doi: 10.1002/chem.201100658

    66. [66]

      Prigodich, A. E.; Randeria, P. S.; Briley, W. E.; Kim, N. J.; Daniel, W. L.; Giljohann, D. A.; Mirkin, C. A. Anal. Chem. 2012, 84, 2062.  doi: 10.1021/ac202648w

    67. [67]

      Wang, Z.; Zhang, R.; Wang, Z.; Wang, H.-F.; Wang, Y.; Zhao, J.; Wang, F.; Li, W.; Niu, G.; Kiesewetter, D. O.; Chen, X. ACS Nano 2014, 8, 12386.  doi: 10.1021/nn505047n

    68. [68]

      Pan, W.; Yang, H.; Li, N.; Yang, L.; Tang, B. Chem. Eur. J. 2015, 21, 6070.  doi: 10.1002/chem.v21.16

    69. [69]

      Pan, W.; Li, Y.; Wang, M.; Yang, H.; Li, N.; Tang, B. Chem. Commun. 2016, 52, 4569.  doi: 10.1039/C5CC10147F

    70. [70]

      Tang, P.; Zheng, J.; Tang, J.; Ma, D.; Xu, W.; Li, J.; Cao, Z.; Yang, R. Chem. Commun. 2017, 53, 2507.  doi: 10.1039/C6CC09496A

    71. [71]

      Li, N.; Chang, C.; Pan, W.; Tang, B. Angew. Chem. Int. Ed. 2012, 51, 7426.  doi: 10.1002/anie.201203767

    72. [72]

      Wang, S.; Xia, M.; Liu, J.; Zhang, S.; Zhang, X. ACS Sens. 2017, 2, 735.  doi: 10.1021/acssensors.7b00290

    73. [73]

      Pan, W.; Zhang, T.; Yang, H.; Diao, W.; Li, N.; Tang, B. Anal. Chem. 2013, 85, 10581.  doi: 10.1021/ac402700s

    74. [74]

      Luan, M.; Li, N.; Pan, W.; Yang, L.; Yu, Z.; Tang, B. Chem. Commun. 2017, 53, 356.  doi: 10.1039/C6CC07605J

    75. [75]

      Yang, L.; Ren, Y.; Pan, W.; Yu, Z.; Tong, L.; Li, N.; Tang, B. Anal. Chem. 2016, 88, 11886.  doi: 10.1021/acs.analchem.6b03701

    76. [76]

      Yang, L.; Chen, Y.; Pan, W.; Wang, H.; Li, N.; Tang, B. Anal. Chem. 2017, 89, 6196.  doi: 10.1021/acs.analchem.7b01144

  • 加载中
    1. [1]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    2. [2]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    3. [3]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    4. [4]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    5. [5]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    6. [6]

      Donghui PANYuping XUXinyu WANGLizhen WANGJunjie YANDongjian SHIMin YANGMingqing CHEN . Preparation and in vivo tracing of 68Ga-labeled PM2.5 mimetic particles for positron emission tomography imaging. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 669-676. doi: 10.11862/CJIC.20230468

    7. [7]

      Yue WANGZhizhi GUJingyi DONGJie ZHUCunguang LIUGuohan LIMeichen LUJian HANShengnan CAOWei WANG . Effects of kelp-derived carbon dots on embryonic development of zebrafish. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1209-1217. doi: 10.11862/CJIC.20230423

    8. [8]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    9. [9]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    10. [10]

      Di WURuimeng SHIZhaoyang WANGYuehua SHIFan YANGLeyong ZENG . Construction of pH/photothermal dual-responsive delivery nanosystem for combination therapy of drug-resistant bladder cancer cell. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1679-1688. doi: 10.11862/CJIC.20240135

    11. [11]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    12. [12]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    13. [13]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    14. [14]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    15. [15]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    16. [16]

      Xinyu ZENGGuhua TANGJianming OUYANG . Inhibitory effect of Desmodium styracifolium polysaccharides with different content of carboxyl groups on the growth, aggregation and cell adhesion of calcium oxalate crystals. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1563-1576. doi: 10.11862/CJIC.20230374

    17. [17]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    18. [18]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    19. [19]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    20. [20]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

Metrics
  • PDF Downloads(77)
  • Abstract views(8972)
  • HTML views(1797)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return