Citation: Hong Qi, Qin Miao, Zhu Hua. A New Four-Dimensional Potential Energy Surface and Predicted Infrared Spectra for the Kr-CS2 Complex[J]. Acta Chimica Sinica, ;2018, 76(2): 138-142. doi: 10.6023/A17070347 shu

A New Four-Dimensional Potential Energy Surface and Predicted Infrared Spectra for the Kr-CS2 Complex

  • Corresponding author: Zhu Hua, zhuhua@scu.edu.cn
  • Received Date: 8 September 2017
    Available Online: 6 February 2017

    Fund Project: Project supported by the National Natural Science Foundation of China (No. 21373139)the National Natural Science Foundation of China 21373139

Figures(2)

  • The spectra of the van der Waals (vdW) complexes provide useful information on the intermolecular potential energy surfaces (PESs) and dynamics of such weakly bound molecules. First and foremost, an accurate potential energy surface is required to allow for spectroscopic analysis for van der Waals complexes. Thus, constructing an effective reduced-dimension potential energy surface, which includes direct relevant intramolecular modes, is the most feasible way and widely used in the recent potential studies. In this work, we present a four-dimensional (4D) ab initio potential energy surface (PES) of the Kr-CS2 complex at the coupled-cluster singles and doubles with noniterative inclusion of connected triples[CCSD(T)]-F12 level. We employed the aug-cc-pVTZ basis set of Woon and Dunning for the C and S atoms and the aug-cc-pVTZ-PP basis set for Kr. The bond functions (3s3p2d1f1g) (for 3s and 3p, α=0.9, 0.3, 0.1; for 2d, α=0.6, 0.2; for f and g, α=0.3) were placed at the mid-point of the R vector. The Q1 and Q3 normal modes for the ν1 symmetric stretching vibration and ν3 antisymmetric stretching vibration of CS2 were explicitly taken into account in the calculations of the Kr-CS2 potential energies. Two vibrationally averaged potentials with CS2 at both the vibrational ground and the ν1+ν3 excited states were generated from the integration of the four-dimensional potential over the Q1 and Q3 coordinates. Each potential contains a T-shaped global minimum and two equivalent linear local minima. These fits to 9000 points have root-mean-square (rms) deviations of 0.143 and 0.145 cm-1 for the ground and the ν1+ν3 excited states, respectively. The radial discrete variable representation (DVR)/angular finite basis representation (FBR) method and Lanczos algorithm were employed to calculate the rovibrational states without separating the inter-and intra-molecular vibrations. The spectroscopic parameters for the ground and the ν1+ν3 excited states of Kr-CS2 are predicted. In addition, the predicted band origin shift is -1.2357 cm-1 for Kr-CS2.
  • 加载中
    1. [1]

      Steed, J. M.; Dixion, T. A.; Klemperer, W. J. Chem. Phys. 1979, 70, 4095.  doi: 10.1063/1.438033

    2. [2]

      Randall, R. W.; Walsh, M. A.; Howard, B. J. Faraday Discuss. Chem. Soc. 1988, 85, 13.  doi: 10.1039/dc9888500013

    3. [3]

      Fraser, G. T.; Pine, A. S.; Suenram, R. D. J. Chem. Phys. 1988, 88, 6157.  doi: 10.1063/1.454454

    4. [4]

      Pine, A. S.; Fraser, G. T. J. Chem. Phys. 1988, 89, 100.  doi: 10.1063/1.455512

    5. [5]

      Iida, M.; Ohsbima, Y.; Endo, Y. J. Phys. Chem. 1993, 97, 357.  doi: 10.1021/j100104a016

    6. [6]

      Weida, M. J.; Sperhac, J. M.; Nesbitt, D. J. J. Chem. Phys. 1994, 101, 8351.  doi: 10.1063/1.468099

    7. [7]

      Xu, Y. J.; Jäger, W. J. Mol. Spectrosc. 1998, 192, 435.  doi: 10.1006/jmsp.1998.7715

    8. [8]

      Xu, Y.; Jager, W. J. Mol. Struct. 2001, 559, 211.

    9. [9]

      Thievin, J.; Cadudal, Y.; Georges, R.; Vigasin, A. A. J. Mol. Spectrosc. 2006, 240, 141.  doi: 10.1016/j.jms.2006.09.010

    10. [10]

      Konno, T.; Fukuda, S.; Ozaki, Y. Chem. Phys. Lett. 2005, 414, 331.  doi: 10.1016/j.cplett.2005.08.088

    11. [11]

      Konno, T.; Fukuda, S.; Ozaki, Y. Chem. Phys. Lett. 2006, 421, 421.  doi: 10.1016/j.cplett.2006.02.001

    12. [12]

      Parker, G. A.; Snow, R. L.; Pack, R. T. J. Chem. Phys. 1976, 64, 1668.  doi: 10.1063/1.432340

    13. [13]

      Parker, G. A.; Keil, M.; Kuppermann, A. J. Chem. Phys. 1983, 78, 1145.  doi: 10.1063/1.444907

    14. [14]

      Keil, M.; Parker, G. A. J. Chem. Phys. 1985, 82, 1947.  doi: 10.1063/1.448378

    15. [15]

      Beneventi, L.; Casavecchia, P.; Vecchiocattivi, F.; Volpi, G. G.; Buck, U.; Lauenstein, C.; Schinke, R. J. Chem. Phys. 1988, 89, 4671.  doi: 10.1063/1.455687

    16. [16]

      Roche, C. F.; Ernesti, A.; Huston, J. M.; Dickinson, A. S. J. Chem. Phys. 1996, 104, 2156.  doi: 10.1063/1.470971

    17. [17]

      Hutson, J. M.; Ernesti, A. M.; Law, M.; Roche, C. F.; Wheatley, R. J. J. Chem. Phys. 1996, 105, 9130.  doi: 10.1063/1.472747

    18. [18]

      Yan, G. S.; Yang, M. H.; Xie, D. Q. J. Chem. Phys. 1998, 109, 10284.  doi: 10.1063/1.477724

    19. [19]

      Negri, F.; Ancliotto, F.; Mistura, G.; Toigo, F. J. Chem. Phys. 1999, 111, 6439.  doi: 10.1063/1.480021

    20. [20]

      Marshall, P. J.; Szczesniak, M. M.; Sadlej, J.; Chalasinski, G.; ter Horst, M. A.; Jameson, C. J. J. Chem. Phys. 1996, 104, 6569.  doi: 10.1063/1.471376

    21. [21]

      Ran, H.; Xie, D. Q. J. Chem. Phys. 2008, 128, 124323.  doi: 10.1063/1.2844786

    22. [22]

      Cui, Y. L.; Ran, H.; Xie, D. Q. J. Chem. Phys. 2009, 130, 224311.  doi: 10.1063/1.3152990

    23. [23]

      Chen, R.; Jiao, E. Q.; Zhu, H.; Xie, D. Q. J. Chem. Phys. 2010, 133, 104302.  doi: 10.1063/1.3454684

    24. [24]

      Chen, R.; Zhu, H. J. Theor. Comput. Chem. 2012, 11, 1175.  doi: 10.1142/S0219633612500782

    25. [25]

      Yan, G. S.; Xie, J. K.; Xie, D. Q. Acta Chim. Sinica 1997, 55, 1041.
       

    26. [26]

      Lu, Y. H.; Zhou, Y. Z.; Xie, D. Q.; Yan, G. S. Acta Chim. Sinica 2000, 58, 1516.  doi: 10.3321/j.issn:0567-7351.2000.12.006
       

    27. [27]

      Ran, H.; Zhou, Y. Z.; Xie, D. Q. Int. Rev. Phys. Chem. 2007, 26, 487.  doi: 10.1080/01442350701437926

    28. [28]

      Mivehvar, F.; Lauzin, C.; McKellar, A. R. W.; Moazzen-Ahmadi, N. J. Mol. Spectrosc. 2012, 281, 24.  doi: 10.1016/j.jms.2012.10.002

    29. [29]

      Farrokhpour, H.; Tozihi, M. Mol. Phys. 2013, 111, 779.  doi: 10.1080/00268976.2012.745630

    30. [30]

      Zang, L. M.; Dai, W.; Zheng, L. M.; Duan, C. X.; Lu, Y. P.; Yang, M. H. J. Chem. Phys. 2014, 140, 114310.  doi: 10.1063/1.4868325

    31. [31]

      Yuan, T.; Sun, X. L.; Hu, Y.; Zhu, H. J. Chem. Phys. 2014, 141, 104306.  doi: 10.1063/1.4894504

    32. [32]

      Hu, Y.; Yuan, T.; Zhu, H. Comput. Theor. Chem. 2015, 47, 1056.

    33. [33]

      Yuan, T.; Yang, M. L.; Zhu, H. Comput. Theor. Chem. 2015, 88, 1070.

    34. [34]

      Shang, J.; Yuan, T.; Zhu, H. Theor. Chem. Acc. 2016, 135, 1.  doi: 10.1007/s00214-015-1755-y

    35. [35]

      Shang, J.; Yuan, T.; Zhu, H. Chem. Phys. Lett. 2016, 648, 147.  doi: 10.1016/j.cplett.2016.02.016

    36. [36]

      Wei, H.; Carrington, T. J. Chem. Phys. 1992, 97, 3029.  doi: 10.1063/1.463044

    37. [37]

      Echave, J.; Clary, D. C. Chem. Phys. Lett. 1992, 190, 225.  doi: 10.1016/0009-2614(92)85330-D

    38. [38]

      Wells, J. S.; Schneider, M.; Maki, A. G. J. Mol. Spectrosc. 1988, 132, 422.  doi: 10.1016/0022-2852(88)90337-2

    39. [39]

      Werner, H. J. ; Knowles, P. J. ; Amos, R. D. ; Berning, A. ; Cooper, D. L. ; Deegan, M. J. O. ; Dobbyn, A. J. ; Eckert, F. ; Elbert, S. T. ; Hampel, C. ; Lindh, R. ; Lloyd, A. W. ; Meyer, W. ; Nicklass, A. ; Peterson, K. ; Pitzer, R. ; Stone, A. J. ; Taylor, P. R. ; Mura, M. E. ; Pulay, P. ; Schutz, M. ; Stoll, H. ; Thoorstcinsso, T. MOLPRO, version 2000. 1, a package of ab initio programs 2000, see http://www.molpro.net

    40. [40]

      Adler, T. B.; Knizia, G.; Werner, H. J. J. Chem. Phys. 1992, 127, 221106.
       

    41. [41]

      Knizia, G.; Adler, T. B.; Werner, H. J. J. Chem. Phys. 2009, 130, 054104.  doi: 10.1063/1.3054300

    42. [42]

      Woon, D. E.; Dunning, T. H. J. Chem. Phys. 1993, 98, 1358.  doi: 10.1063/1.464303

    43. [43]

      Peterson, K. A.; Figgen, D.; Goll, E.; Stoll, H.; Dolg, M. J. Chem. Phys. 2003, 119, 11113.  doi: 10.1063/1.1622924

    44. [44]

      Pedersen, T. B.; Fernandez, B.; Koch, H.; Makarewicz, J. J. Chem. Phys. 2001, 115, 8431.  doi: 10.1063/1.1398102

    45. [45]

      Boys, S. F.; Bernardi, F. Mol. Phys. 1970, 19, 553.  doi: 10.1080/00268977000101561

    46. [46]

      Tennyson, J.; Sutcliffe, B. T. Mol. Phys. 1984, 51, 887.  doi: 10.1080/00268978400100591

    47. [47]

      Miller, S.; Tennyson, J. J. Mol. Spectrosc. 1988, 128, 132530.
       

    48. [48]

      Lin, S. Y.; Guo, H. J. Chem. Phys. 2002, 117, 5183.  doi: 10.1063/1.1500731

    49. [49]

      Chen, R. Q.; Ma, G. B.; Guo, H. Chem. Phys. Lett. 2000, 320, 567.  doi: 10.1016/S0009-2614(00)00254-2

    50. [50]

      Colbert, D. T.; Miller, W. H. J. Chem. Phys. 1992, 96, 1982.  doi: 10.1063/1.462100

    51. [51]

      Lanczos, C. J. Res. Natl. Bur. Stand. 1950, 45, 255.  doi: 10.6028/jres.045.026

    52. [52]

      Yu, H. G. J. Chem. Phys. 2002, 117, 8190.  doi: 10.1063/1.1511721

    53. [53]

      Watson, J. K. G. J. Chem. Phys. 1967, 46, 1935.  doi: 10.1063/1.1840957

    54. [54]

      Qin, M.; Shang, J.; Hong, Q.; Zhu, H. Mol. Phys. 2017, 115, 379.  doi: 10.1080/00268976.2016.1263764

  • 加载中
    1. [1]

      Jia Zhou . Constructing Potential Energy Surface of Water Molecule by Quantum Chemistry and Machine Learning: Introduction to a Comprehensive Computational Chemistry Experiment. University Chemistry, 2024, 39(3): 351-358. doi: 10.3866/PKU.DXHX202309060

    2. [2]

      Supin Zhao Jing Xie . Understanding the Vibrational Stark Effect of Water Molecules Using Quantum Chemistry Calculations. University Chemistry, 2025, 40(3): 178-185. doi: 10.12461/PKU.DXHX202406024

    3. [3]

      Yu'ang Liu Yuechao Wu Junyu Huang Tao Wang Xiaohong Liu Tianying Yan . Computation of Absolute Electrode Potential of Standard Hydrogen Electrode Using Ab Initio Method. University Chemistry, 2025, 40(3): 215-222. doi: 10.12461/PKU.DXHX202407112

    4. [4]

      Juan GuoMingyuan FangQingsong LiuXiao RenYongqiang QiaoMingju ChaoErjun LiangQilong Gao . Zero thermal expansion in Cs2W3O10. Chinese Chemical Letters, 2024, 35(7): 108957-. doi: 10.1016/j.cclet.2023.108957

    5. [5]

      Pan LiuYanming SunAlberto J. Fernández-CarriónBowen ZhangHui FuLunhua HeXing MingCongling YinXiaojun Kuang . Bismuth-based halide double perovskite Cs2KBiCl6: Disorder and luminescence. Chinese Chemical Letters, 2024, 35(5): 108641-. doi: 10.1016/j.cclet.2023.108641

    6. [6]

      Yuan TengZichun ZhouJinghua ChenSiying HuangHongyan ChenDaibin Kuang . Dual atom-bridge effect promoting interfacial charge transfer in 2D/2D Cs3Bi2Br9/BiOBr epitaxial heterojunction for efficient photocatalysis. Chinese Chemical Letters, 2025, 36(2): 110430-. doi: 10.1016/j.cclet.2024.110430

    7. [7]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    8. [8]

      Zhijie ZhangXun LiHuiling TangJunhao WuChunxia YaoKui Li . Cs2CuBr4 perovskite quantum dots confined in mesoporous CuO framework as a p-n type S-scheme heterojunction for efficient CO2 photoconversion. Chinese Chemical Letters, 2024, 35(11): 109700-. doi: 10.1016/j.cclet.2024.109700

    9. [9]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    10. [10]

      Jiahui CHENTingting ZHENGXiuyun ZHANGWei LÜ . Research progress of near-infrared absorption inorganic nanomaterials in photothermal and photodynamic therapy of tumors. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2396-2414. doi: 10.11862/CJIC.20240106

    11. [11]

      Han ZHANGJianfeng SUNJinsheng LIANG . Hydrothermal synthesis and luminescent properties of broadband near-infrared Na3CrF6 phosphor. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 349-356. doi: 10.11862/CJIC.20240098

    12. [12]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    13. [13]

      Hui PengXiao WangWeiguo HuangShuiyue YuLinghang KongQilin WeiJialong ZhaoBingsuo Zou . Efficient tunable visible and near-infrared emission in Sb3+/Sm3+-codoped Cs2NaLuCl6 for near-infrared light-emitting diode, triple-mode fluorescence anti-counterfeiting and information encryption. Chinese Chemical Letters, 2024, 35(11): 109462-. doi: 10.1016/j.cclet.2023.109462

    14. [14]

      Wenliang Wang Weina Wang Lixia Feng Nan Wei Sufan Wang Tian Sheng Tao Zhou . Proof and Interpretation of Severe Spectroscopic Selection Rules. University Chemistry, 2025, 40(3): 415-424. doi: 10.12461/PKU.DXHX202408063

    15. [15]

      Qi Wang Yicong Gao Feng Lu Quli Fan . Preparation and Performance Characterization of the Second Near-Infrared Phototheranostic Probe: A New Design and Teaching Practice of Polymer Chemistry Comprehensive Experiment. University Chemistry, 2024, 39(11): 342-349. doi: 10.12461/PKU.DXHX202404141

    16. [16]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

    17. [17]

      Jingyi Chen Fu Liu Tiejun Zhu Kui Cheng . Practice of Integrating Ideological and Political Education into Raman Spectroscopy Analysis Experiment Course. University Chemistry, 2024, 39(2): 140-146. doi: 10.3866/PKU.DXHX202310111

    18. [18]

      Chun-Lin Sun Yaole Jiang Yu Chen Rongjing Guo Yongwen Shen Xinping Hui Baoxin Zhang Xiaobo Pan . Construction, Performance Testing, and Practical Applications of a Home-Made Open Fluorescence Spectrometer. University Chemistry, 2024, 39(5): 287-295. doi: 10.3866/PKU.DXHX202311096

    19. [19]

      Tianlong Zhang Jiajun Zhou Hongsheng Tang Xiaohui Ning Yan Li Hua Li . Virtual Simulation Experiment for Laser-Induced Breakdown Spectroscopy (LIBS) Analysis. University Chemistry, 2024, 39(6): 295-302. doi: 10.3866/PKU.DXHX202312049

    20. [20]

      Wei Peng Baoying Wen Huamin Li Yiru Wang Jianfeng Li . Exploration and Practice on Raman Scattering Spectroscopy Experimental Teaching. University Chemistry, 2024, 39(8): 230-240. doi: 10.3866/PKU.DXHX202312062

Metrics
  • PDF Downloads(6)
  • Abstract views(1953)
  • HTML views(455)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return