Citation: Gu Tianhang, Shi Junming, Hua Yilong, Liu Jing, Wang Wei, Zhang Wei-xian. Enrichment of Silver from Water Using Nanoscale Zero-Valent Iron (nZVI)[J]. Acta Chimica Sinica, ;2017, 75(10): 991-997. doi: 10.6023/A17070345 shu

Enrichment of Silver from Water Using Nanoscale Zero-Valent Iron (nZVI)

  • Corresponding author: Wang Wei, 06ww@tongji.edu.cn Zhang Wei-xian, zhangwx@tongji.edu.cn
  • Received Date: 28 July 2017
    Available Online: 18 October 2017

    Fund Project: Project supported by the National Postdoctoral Program for Innovative Talents (BX201700172) and the National Natural Science Foundation of China (No. 51578398)the National Postdoctoral Program for Innovative Talents BX201700172the National Natural Science Foundation of China 51578398

Figures(8)

  • Increasing evidence suggests that nanoscale zero-valent iron (nZVI) is an effective nanomaterial for the enrichment and separation of heavy metals from water, especially for recovering precious metals such as gold and silver from trace level sources. In this work, a nano-iron reactor, consisting of reaction zone, separation zone and reuse facilities, is applied to recovery of silver from aqueous solution using nZVI. We demonstrate that nZVI could sequester Ag+ (ca. 1 mg/L) and be transformed into high-grade (32.0 mg/g) silver solids ("ore") as nZVI is recycled in this "reaction-separation-reuse" system. Besides, increasing hydraulic retention time (HRT), from 10 min to 60 min, could enhance the enrichment efficiency and finally improve silver content in solid phase. We further demonstrate that there is a positive correlation between solution oxidation-reduction potential in reaction zone and Ag+ concentration in effluent, and this relationship can be used to regulate the reaction kinetics and separation efficiency. Data from oxidation-reduction potential regulating experiment are presented and a mathematic formula is provided, proving this system is reliable and controllable. Solid phase characterizations with X-ray diffraction and X-ray photoelectron spectroscopy confirm that Ag+ is reduced to metallic silver (Ag0). Images acquired via high-resolution transmission electron microscopy reveal that Ag0 ( < 10 nm) is deposited on the surface of nZVI (Ag-nZVI). Pure silver nanoparticles (AgNPs, 9~32 nm) could be acquired by simply processing Ag-nZVI with sulfuric acid and polyvinyl pyrrolidone. Batch experiments confirm that nZVI is far more efficient and less pH-dependent, comparing to other materials (e.g., mZVI, α-Fe2O3, nTiO2). 99% Ag+ (1000 mg/L) could be sequestrated in less than 15 s with 1 g/L nZVI. And the separation coefficient of nZVI for Ag+ reaches 3.2×104, which is several orders of magnitude higher than that of conventional adsorbents and reductants (102~741). This study demonstrates that nZVI is a powerful candidate to recover Ag from water (e.g., industrial wastewater, groundwater) with trace level silver and produce valuable AgNPs.
  • 加载中
    1. [1]

      Yu, S. L.; Yin, Y. G.; Liu, J. F. Environ. Sci.-Proc. Imp. 2013, 15, 78.

    2. [2]

      Syed, S. Waste. Manage. 2016, 50, 234.  doi: 10.1016/j.wasman.2016.02.006

    3. [3]

      World Silver Survey, 2017, GFMS Limited/The Silver Institute. http://www.silverinstitute.org

    4. [4]

      Benn, M. T.; Westerhoff, P. Environ. Sci. Technol. 2008, 42, 4133.  doi: 10.1021/es7032718

    5. [5]

      Zhou, X. X.; Liu, J. F.; Yuan, C. G.; Chen, Y. S. J. Anal. Atom. Spectrom. 2016, 31, 2285.  doi: 10.1039/C6JA00243A

    6. [6]

      Eckelman, M. J.; Graedel, T. E. Environ. Sci. Technol. 2007, 41, 6283.  doi: 10.1021/es062970d

    7. [7]

      Li, R.; Lu, Y. Y.; Lei, K. X.; Li, F. J.; Cheng, F. Y.; Chen, J. Acta Chim. Sinica 2017, 75, 199(in Chinese).
       

    8. [8]

      Wang, C.; Deng, N.; Wang, L. L.; Xu, D. J.; Yao, X. Q. Chinese J. Org. Chem. 2016, 36, 1034(in Chinese).
       

    9. [9]

      Vance, M. E.; Kuiken, T.; Vejerano, E. P.; McGinnis, S. P.; Hochella, M. F.; Rejeski, D.; Hull, M. S. Beilstein. J. Nanotech. 2015, 6, 1769.  doi: 10.3762/bjnano.6.181

    10. [10]

      Song, X. H.; Gunawan, P.; Jiang, R. R.; Leong, S. S. J.; Wang, K.; Xu, R. J. Hazard. Mater. 2011, 194, 162.  doi: 10.1016/j.jhazmat.2011.07.076

    11. [11]

      Zhou, Y. M.; Gao, B.; Zimmerman, R. A.; Cao, X. D. Chemosphere 2014, 117, 801.  doi: 10.1016/j.chemosphere.2014.10.057

    12. [12]

      Celik. Z.; Gulfen. M.; Aydin, A. O. J. Hazard. Mater. 2010, 174, 556.  doi: 10.1016/j.jhazmat.2009.09.087

    13. [13]

      Wang, H. Y.; Gao, H.; Sun, J. S.; Li, J.; Su, Y. X.; Ji, Y. L.; Gong, C. M. Desalination 2011, 270, 258.  doi: 10.1016/j.desal.2010.11.053

    14. [14]

      Huo, H. Y.; Su, H. J.; Tan, T. W. Chem. Eng. J. 2009, 150, 139.  doi: 10.1016/j.cej.2008.12.014

    15. [15]

      Huang, X. Y.; Wang, W.; Ling, L.; Zhang, W. X. Acta Chim. Sinica 2017, 75, 529(in Chinese).  doi: 10.11862/CJIC.2017.063
       

    16. [16]

      Mu, Y.; Jia, F. L.; Ai, Z. H.; Zhang, L. Z. Environ. Sci.-Nano 2017, 4, 27.  doi: 10.1039/C6EN00398B

    17. [17]

      Fu, F. L.; Dionysiou, D. D.; Liu, H. J. Hazard. Mater. 2014, 267, 194.  doi: 10.1016/j.jhazmat.2013.12.062

    18. [18]

      Zhang, Y. L.; Yan, J.; Dai, C. M.; Li, Y. T.; Zhou, Y.; Zhou, X. F. J. Nanopart. Res. 2015, 17, 1110.

    19. [19]

      Teng, W.; Fan, J. W.; Wang, W.; Bai, N.; Liu, R.; Liu, Y.; Deng, Y. H.; Kong, B.; Yang, J. P.; Zhao, D. Y.; Zhang, W. X. J. Mater. Chem. A 2017, 5, 4478.  doi: 10.1039/C6TA10007D

    20. [20]

      Ling, L.; Zhang, W. X. J. Am. Chem. Soc. 2015, 137, 2788.  doi: 10.1021/ja510488r

    21. [21]

      Sheng, G. D.; Yang, P. J.; Tang, Y. N.; Hu, Q. Y.; Li, H.; Ren, X. M.; Hu, B. W.; Wang, X. K.; Huang, Y. Y. Appl. Catal. B-Environ. 2016, 193, 189.  doi: 10.1016/j.apcatb.2016.04.035

    22. [22]

      Xia, X. F.; Hua, Y. L.; Huang, X. Y.; Ling, L.; Zhang, W. X. Acta Chim. Sinica 2017, 75, 594(in Chinese).
       

    23. [23]

      Sheng, G. D.; Alsaedi, A.; Shammakh, W.; Monaquel, S.; Sheng, J.; Wang, X. K.; Li, H.; Huang, Y. Y. Appl. Carbon. 2016, 99, 123.  doi: 10.1016/j.carbon.2015.12.013

    24. [24]

      Li, S. L.; Wang, W.; Liu, Y. Y.; Zhang, W. X. Chem. Eng. J. 2014, 254, 115.  doi: 10.1016/j.cej.2014.05.111

    25. [25]

      Wang, W.; Hua, Y. L.; Li, S. L.; Yan, W. L.; Zhang, W. X. Chem. Eng. J. 2016, 304, 79.  doi: 10.1016/j.cej.2016.06.069

    26. [26]

      Li, S. L.; Wang, W.; Liang, F. P.; Zhang, W. X. J. Hazard. Mater. 2017, 322, 163.  doi: 10.1016/j.jhazmat.2016.01.032

    27. [27]

      Wang, W.; Li, S. L.; Lei, H.; Pan, B. C.; Zhang, W. X. Chem. Eng. J. 2015, 260, 616.  doi: 10.1016/j.cej.2014.09.042

    28. [28]

      Shi, Z. Q.; Nurmi, T. J.; Tratnyek, G. P. Environ. Sci. Technol. 2011, 45, 1586.  doi: 10.1021/es103185t

    29. [29]

      Sverdrup, H.; Koca, D.; Ragnarsdottir, V. K. Resour. Conserv. Recy. 2014, 83, 121.  doi: 10.1016/j.resconrec.2013.12.008

    30. [30]

      Liang, L. P.; Yang, W. J.; Guan, X. H.; Li, J. L.; Xu, Z. J.; Wu, J.; Huang, Y. Y.; Zhang, X. Z. Water Res. 2013, 47, 5846.  doi: 10.1016/j.watres.2013.07.011

    31. [31]

      Guan, X. H.; Sun, Y. K.; Qin, H. J.; Li, J. X.; Lo, I. M. C.; He, D.; Dong, H. R. Water Res. 2015, 75, 224.  doi: 10.1016/j.watres.2015.02.034

    32. [32]

      Liang, L. P.; Sun, W.; Guan, X. H.; Huang, Y. Y.; Choi, W. Y.; Bao, H. L.; Li, L. N.; Jiang, Z. Water Res. 2014, 49, 371.  doi: 10.1016/j.watres.2013.10.026

    33. [33]

      Nitayaphat, W.; Jintakosol, T. J. Clean. Prod. 2015, 87, 850.  doi: 10.1016/j.jclepro.2014.10.003

    34. [34]

      Wang, Y.; Ma, X. J.; Li, Y. F.; Li, X. L.; Yang, L. Q.; Ji, L.; He, Y. Chem. Eng. J. 2012, 209, 394.  doi: 10.1016/j.cej.2012.07.143

    35. [35]

      Ju, S. H.; Zhang, Y. F.; Zhang, Y.; Xue, P. Y.; Wang, Y. H. J. Hazard. Mater. 2011, 192, 554.  doi: 10.1016/j.jhazmat.2011.05.049

    36. [36]

      Yin, Y. G.; Shen, M. H.; Tan, Z. Q.; Yu, S. J.; Liu, J. F.; Jiang, G. B. Environ. Sci. Technol. 2015, 49, 6581.  doi: 10.1021/es5061287

  • 加载中
    1. [1]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    2. [2]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    3. [3]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    4. [4]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    5. [5]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    6. [6]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    7. [7]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    8. [8]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    9. [9]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    10. [10]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    11. [11]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    12. [12]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    13. [13]

      Di WURuimeng SHIZhaoyang WANGYuehua SHIFan YANGLeyong ZENG . Construction of pH/photothermal dual-responsive delivery nanosystem for combination therapy of drug-resistant bladder cancer cell. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1679-1688. doi: 10.11862/CJIC.20240135

    14. [14]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    15. [15]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    16. [16]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    17. [17]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    18. [18]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    19. [19]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    20. [20]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

Metrics
  • PDF Downloads(12)
  • Abstract views(2010)
  • HTML views(400)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return