Citation: Jin Tongyu, An Yu, Zhang Fan, He Pingang. Real-time Monitoring Skin Cell Alignment on Nano-grooves Using Electric Cell-substrate Impedance Sensing (ECIS)[J]. Acta Chimica Sinica, ;2017, 75(11): 1115-1120. doi: 10.6023/A17070337 shu

Real-time Monitoring Skin Cell Alignment on Nano-grooves Using Electric Cell-substrate Impedance Sensing (ECIS)

  • Corresponding author: Zhang Fan, fzhang@chem.ecnu.edu.cn He Pingang, pghe@chem.ecnu.edu.cn
  • Received Date: 26 July 2017
    Available Online: 8 November 2017

    Fund Project: the National Natural Science Foundation of China 21405049Project supported by the National Natural Science Foundation of China (No. 21405049)

Figures(9)

  • Cell alignment plays a crucial role in the repair and regeneration of tissues, which is caused by the "contact guidance" of micro/nano structures. In this paper, the nano-grooves with 200 nm in width, 400 nm in period and 75 nm in depth were fabricated on gold substrate with the technique of nanoimprint to simulate the extracellular matrix (ECM). Electric cell-substrate impedance sensing (ECIS) was employed firstly to real-time monitor cell alignment of human foreskin fibroblasts (HFF) and human immortal keratinocyte cells (HaCaT) on nano-grooves, which are two important functional cell types in skin wound-healing. The cell images displayed that the nano-grooves could induce the alignment of HFF cells, in which, the cell arrangement along the direction of nano-grooves occurred prior to the cell elongation. While the nano-grooves couldn't influence the morphology of HaCaT cells, and their adhesion and spread were delayed. In the ECIS monitoring, HFF and HaCaT cells both presented increased normalized impedance (NI) values at their respective characteristic frequencies of 977 and 1465 Hz on nano-grooves and flat electrodes with the prolongation of culture time during 24 h and the increasing trends of NI values were also similar:in the first 6 h, NI values increased faster, and then, the increasing rates declined obviously. HFF cells on nano-grooves generated more intense impedance signals with a larger distinction of increasing rate than those on flat electrodes, indicating that the nano-grooves could promote the adhesion and spread of HFF cells and the directional arrangement had a larger impact on the variation of NI values than cell elongation. While HFF cells adhered and spread in random directions, leading to the reduced difference in increasing rate of NI values. The NI values of HFF cells was further correlated with cell alignment, showing the enhanced impedance responses with the rising percentage of aligned cells. More importantly, there was a good linear correlation between NI values and the percentage of cells arranging along the direction of nano-grooves. In contrast, HaCaT cells had smaller NI values on the nano-grooves with the similar increasing rates, compared to the flat electrodes, revealing that the nano-grooves were less suitable for the adhesion and spread of HaCaT cells with almost no change of cell morphology, and the cell adhesion could cause more obvious variation of NI values than cell spread. Our research would provide a support for the development of complex cell sensors based on ECIS and its application in clinical research field.
  • 加载中
    1. [1]

      Goodman, S. L.; Sims, P. A.; Albrecht, R. M. Biomaterials 1996, 17, 2087.  doi: 10.1016/0142-9612(96)00016-6

    2. [2]

      Gerecht, S.; Bettinger, C. J.; Zhang, Z. T.; Borenstein, J. T.; Vunjak-Novakovic, G.; Langer, R. Biomaterials 2007, 28, 4068.  doi: 10.1016/j.biomaterials.2007.05.027

    3. [3]

      Patel, S.; Kurpinski, K.; Quigley, R.; Gao, H. F.; Hsiao, B. S.; Poo, M. M.; Li, S. Nano Lett. 2007, 7, 2122  doi: 10.1021/nl071182z

    4. [4]

      Flemming, R. G.; Murphy, C. J.; Abrams, G. A.; Goodman, S. L.; Nealey, P. F. Biomaterials 1999, 20, 573.  doi: 10.1016/S0142-9612(98)00209-9

    5. [5]

      Isenberg, B. C.; Tsuda, Y.; Williams, C.; Shimizu, T.; Yamato, M.; Okano, T.; Wong, J. Y. Biomaterials 2008, 29, 2565.  doi: 10.1016/j.biomaterials.2008.02.023

    6. [6]

      Kim, H. N.; Hong, Y.; Kim, M. S.; Kim, S. M.; Suh, K. Y. Bio-materials 2012, 33, 8782.

    7. [7]

      Zhou, F.; Yuan, L.; Huang, H.; Chen, H. Chin. Sci. Bull. 2009, 54, 3200.  doi: 10.1007/s11434-009-0366-1

    8. [8]

      Choi, C. H.; Hagvall, S. H.; Wu, B. M.; Dunn, J. C. Y.; Beygui, R. E.; Kim, C. J. Biomaterials 2007, 28, 1672.  doi: 10.1016/j.biomaterials.2006.11.031

    9. [9]

      Crouch, A. S.; Miller, D.; Luebke, K. J.; Hu, W. Biomaterials 2009, 30, 1560.  doi: 10.1016/j.biomaterials.2008.11.041

    10. [10]

      Lamers, E.; Walboomers, X. F.; Domanski, I. M.; Riet, J.; Delft, F. C. M. J. M.; Luttge, R.; Winnubst, L. A. J. A.; Gardeniers, H. J. G. E.; Jansen, J. A. Biomaterials 2010, 31, 3307.  doi: 10.1016/j.biomaterials.2010.01.034

    11. [11]

      Tsai, W. B.; Ting, Y. C.; Yang, J. Y.; Lai, J. Y.; Liu, H. L. J. Mater. Sci-Mater. Med. 2009, 20, 1367.  doi: 10.1007/s10856-008-3687-8

    12. [12]

      Viswanathan, P.; Ondeck, M. G.; Chirasatitsin, S.; Ngamkham, K. Reilly, G. C.; Engler, A. J.; Battaglia, G. Biomaterials 2015, 52, 140.  doi: 10.1016/j.biomaterials.2015.01.034

    13. [13]

      Liu, G. F.; Zhang, D.; Feng, C. L. Angew. Chem., Int. Ed. 2014, 53, 7789.  doi: 10.1002/anie.201403249

    14. [14]

      Liu, X. L.; Wang, S. T. Chem. Soc. Rev. 2014, 43, 2385.  doi: 10.1039/C3CS60419E

    15. [15]

      Zong, X. H.; Bien, H.; Chung, C. Y.; Yin, L. H.; Fang, D. F.; Hsiao, B. S.; Chu, B.; Entcheva, E. Biomaterials 2005, 26, 5330.  doi: 10.1016/j.biomaterials.2005.01.052

    16. [16]

      Zhu, B. S.; Zhang, Q. Q.; Lu, Q. H.; Xu, Y. H.; Yin, J.; Hu, J.; Wang, Z. G. Biomaterials 2003, 25, 4215.

    17. [17]

      Giaever, I.; Keese, C. R. Proc. Nat. Acad. Sci. U. S. A. 1984, 81, 3761.  doi: 10.1073/pnas.81.12.3761

    18. [18]

      Xiao, C.; Lachance, B.; Sunahara, G.; Luong, J. H. T. Anal. Chem. 2002, 74, 1333.  doi: 10.1021/ac011104a

    19. [19]

      Zhang, X.; Wang, W.; Li, F.; Voiculescu, I. Lab Chip 2017, 17, 2054.  doi: 10.1039/C7LC00375G

    20. [20]

      Abiri, H.; Abdolahad, M.; Gharooni, M.; Hosseini, S. A.; Janmaleki, M.; Azimi, S.; Hosseini, M.; Mohajerzadeh, S. Biosens. Bioelectron. 2015, 68, 577.  doi: 10.1016/j.bios.2015.01.057

    21. [21]

      Curtis, T. M.; Widder, M. W.; Brennan, L. M.; Schwager, S. J.; Schalie, W. H.; Fey, J.; Salazar, N. Lab Chip. 2009, 9, 2176.  doi: 10.1039/b901314h

    22. [22]

      Asphahani, F.; Zhang, M. G. Analyst 2007, 132, 835.  doi: 10.1039/b704513a

    23. [23]

      Xiao, C. D.; Lachance, B.; Sunahara, G.; Luong, J. H. T. Anal. Chem. 2002, 74, 5748.  doi: 10.1021/ac025848f

    24. [24]

      Xie, F. B.; Xu, Y. C.; Wang, L.; Mitchelson, K.; Xing, W. L.; Cheng, J. Analyst 2012, 137, 1343.  doi: 10.1039/c2an16141a

    25. [25]

      Kang, G.; Kim, Y. J.; Moon, H. S.; Lee, J. W.; Yoo, T. K.; Park, K.; Lee, J. H. Biomicrofluidics 2013, 7, 044126.  doi: 10.1063/1.4818838

    26. [26]

      Yang, L. J.; Arias, L. R.; Lane, T. S.; Yancey, M. D.; Mamouni, J. Anal. Bioanal. Chem. 2011, 399, 1823.  doi: 10.1007/s00216-010-4584-9

    27. [27]

      Yim, E. K. F.; Pang, S. W.; Leong, K. W. Exp. Cell Res. 2007, 313, 1820.  doi: 10.1016/j.yexcr.2007.02.031

    28. [28]

      Solly, K.; Wang, X. B.; Xu, X.; Strulovici, B.; Zheng, W. Assay Drug Dev. Techn. 2004, 2, 363.  doi: 10.1089/adt.2004.2.363

    29. [29]

      Cui, Y.; An, Y.; Jin, T. Y.; Zhang, F.; He, P. G. Sensor. Actuat. B-Chem. 2017, 250, 461.  doi: 10.1016/j.snb.2017.04.183

    30. [30]

      Hug, T. S. Assay Drug Dev. Techn. 2003, 1, 479.  doi: 10.1089/154065803322163795

    31. [31]

      Zhao, H. Ph.D. Dissertation, East China Normal University, Shanghai, 2012(in Chinese). 

  • 加载中
    1. [1]

      Di WURuimeng SHIZhaoyang WANGYuehua SHIFan YANGLeyong ZENG . Construction of pH/photothermal dual-responsive delivery nanosystem for combination therapy of drug-resistant bladder cancer cell. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1679-1688. doi: 10.11862/CJIC.20240135

    2. [2]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    3. [3]

      Xinyu ZENGGuhua TANGJianming OUYANG . Inhibitory effect of Desmodium styracifolium polysaccharides with different content of carboxyl groups on the growth, aggregation and cell adhesion of calcium oxalate crystals. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1563-1576. doi: 10.11862/CJIC.20230374

    4. [4]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    5. [5]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    6. [6]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    7. [7]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    8. [8]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    9. [9]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    10. [10]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    11. [11]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    12. [12]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    13. [13]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    14. [14]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    15. [15]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    16. [16]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    17. [17]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    18. [18]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    19. [19]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    20. [20]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

Metrics
  • PDF Downloads(2)
  • Abstract views(1895)
  • HTML views(185)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return