Citation: Zhang Qi, Liu Ao, Yu Haizhu, Fu Yao. Hydride Source in Ethers Hydrosilylation Reaction Catalyzed by Brookhart's Ir(Ⅲ) Pincer Complex[J]. Acta Chimica Sinica, ;2018, 76(2): 113-120. doi: 10.6023/A17070328 shu

Hydride Source in Ethers Hydrosilylation Reaction Catalyzed by Brookhart's Ir(Ⅲ) Pincer Complex

  • Corresponding author: Yu Haizhu, yuhaizhu@ahu.edu.cn Fu Yao, fuyao@ustc.edu.cn
  • Received Date: 3 September 2017
    Available Online: 28 February 2017

    Fund Project: the National Natural Science Foundation of China 21572212Project supported by the National Natural Science Foundation of China (Nos. 21572212, 21672001, 21702041), Joint Foundation of National Natural Science Foundation of China and Academy of Engineering Physics (No. U1530262), and the supercomputing system of National Supercomputing Center in Shenzhen and USTCthe National Natural Science Foundation of China 21702041the National Natural Science Foundation of China 21672001Joint Foundation of National Natural Science Foundation of China and Academy of Engineering Physics U1530262

Figures(10)

  • The hydrosilylative reduction with silane is a popular defunctionalization strategy to convert biomass into chemicals and energies because of the mild reaction conditions. Among these, the reduction of C-O bond is particularly important because of its application in sugar biomass reduction. The (C6F5)3 B/silane catalytic system has been frequently used in the reduction of C-O bonds in the past years. However, Brookhart et al. reported alkyl ethers reduction by using Ir(Ⅲ) pincer catalyst and reductant HSiEt3. This work provides a novel hydrosilylation catalyst for C-O reduction and an effective method for sugar biomass deoxygenation. According to the previous mechanistic proposals on similar Ir catalysed hydrosilylation reactions, the iridium dihydride complex, iridium silyl hydride complex, silane adduct iridium complex and iridium silyl trihydride complex might possibly act as the hydride source. We carried out the theoretical study on Brookhart's Ir(Ⅲ) Pincer Complex/HSiEt3 catalyzed hydrosilylation reaction of EtOEt yielding ethane and EtOSiEt3. The density functional theory (DFT) calculations in our study indicate that the iridium dihydride complex is the best hydride source. Our calculation result is consistent well with experimental observations in Brookhart's experiment. For example, the phenomenon that adding iridium dihydride complex into the reaction system increases the reaction rate is understandable because the complex is involved in the rate-determining step. From the Distortion/Interaction analysis, we found that hydride transfer steps on the other three possible hydride sources are disfavoured by the HSiEt3/-SiEt3 group (derived from HSiEt3) bonded with Ir center. The iridium silyl hydride complex is unfavourable because the Ir-H bond is strengthened and the pincer ligand is distorted. For the silane adduct iridium complex, the coordination of HSiEt3 destabilizes iridium complex intermediate for entropy increases and trans effect, and destabilizes the related transition state by damaging its pincer ligand. Further, the corresponding hydride transfer transition state from iridium silyl trihydride is highly unstable and Si-H bond always reform automatically. What's more important, the moderate bond dissociation energy of Ir-hydride, small steric hindrance and the promotion effect of SiEt3 group coordination with ether all facilitate the hydride transfer on the iridium dihydride complex.
  • 加载中
    1. [1]

      (a) Kerr, R. A. ; Service, R. F. Science 2005, 309, 101. (b) Ragauskas, A. J. ; Williams, C. K. ; Davison, B. H. ; Britovsek, G. ; Cairney, J. ; Eckert, C. A. ; Fredrick, W. J. J. ; Hallett, J. P. ; Leak, D. J. ; Liotta, C. L. ; Mielenz, J. R. ; Murphy, R. ; Templer, R. ; Tschaplinski, T. Science 2006, 311, 484.

    2. [2]

    3. [3]

      (a) Yang, J. ; Brookhart, M. Adv. Synth. Catal. 2009, 351, 175. (b) Caputo, C. B. ; Stephan, D. W. Organometallics 2012, 31, 27. (c) Scott, V. J. ; Çelenligil-Çetin, R. ; Ozerov, O. V. J. Am. Chem. Soc. 2005, 127, 2852.

    4. [4]

      (a) Gevorgyan, V. ; Liu, J. -X. ; Rubin, M. ; Benson S. ; Yamamoto, Y. Tetrahedron Lett. 1999, 40, 8919. (b) Gevorgyan, V. ; Rubin, M. ; Benson, S. ; Liu, J. -X. ; Yamamoto, Y. J. Org. Chem. 2000, 65, 6179. (c) Blackwell, J. M. ; Morrison, D. J. ; Piers, W. E. Tetrahedron 2002, 58, 8247. (d) Nimmagadda, R. D. ; McRae, C. Tetrahedron Lett. 2006, 47, 5755. (e) Mack, D. J. ; Guo, B. ; Njardarson, J. T. Chem. Commun. 2012, 48, 7844. (f) Chojnowski, J. ; Rubinsztajn, S. ; Cella, J. A. ; Fortuniak, W. ; Cypryk, M. ; Kurjata, J. ; Kaźmierski, K. Organometallics 2005, 24, 6077.

    5. [5]

      (a) Park, S. ; Brookhart, M. Organometallics 2010, 29, 6057. (b) Parks, D. J. ; Piers, W. E. J. Am. Chem. Soc. 1996, 118, 9440. (c) Skjel, M. K. ; Houghton, A. Y. ; Kirby, A. E. ; Harrison, D. J. ; McDonald, R. ; Rosenberg, L. Org. Lett. 2010, 12, 376. (d) Chandrasekhar, S. ; Reddy, C. R. ; Babu, B. N. J. Org. Chem. 2002, 67, 9080.

    6. [6]

      (a) Bézier, D. ; Park, S. ; Brookhart, M. Org. Lett. 2013, 15, 496. (b) Gevorgyan, V. ; Rubin, M. ; Liu, J. -X. ; Yamamoto, Y. J. Org. Chem. 2001, 66, 1672. (c) Cheng, C. ; Brookhart, M. Angew. Chem. , Int. Ed. 2012, 51, 9422.

    7. [7]

      (a) Park, S. ; Bézier, D. ; Brookhart, M. J. Am. Chem. Soc. 2012, 134, 11404. (b) Berkefeld, A. ; Piers, W. E. ; Parvez, M. J. Am. Chem. Soc. 2010, 132, 10660.

    8. [8]

      (a) Blackwell, J. M. ; Sonmor, E. R. ; Scoccitti, T. ; Piers, W. E. Org. Lett. 2000, 2, 3921. (b) Rubin, M. ; Schwier, T. ; Gevorgyan, V. J. Org. Chem. 2002, 67, 1936. (c) Ding, S. ; Song, L. -J. ; Chung, L. W. ; Zhang, X. ; Sun, J. ; Wu, Y. -D. J. Am. Chem. Soc. 2013, 135, 13835.

    9. [9]

      (a) McLaughlin, M. P. ; Adduci, L. L. ; Becker, J. J. ; Gagné, M. R. J. Am. Chem. Soc. 2013, 135, 1225. (b) Robert, T. ; Oestreich, M. Angew. Chem. , Int. Ed. 2013, 52, 5216. (c) Adduci, L. L. ; McLaughlin, M. P. ; Bender, T. A. ; Becker, J. J. ; Gagné, M. R. Angew. Chem. , Int. Ed. 2014, 53, 1646.

    10. [10]

      (a) Yang, J. ; White, P. S. ; Brookhart, M. J. Am. Chem. Soc. 2008, 130, 17509. (b) Yang, J. ; Brookhart, M. J. Am. Chem. Soc. 2007, 129, 12656. (c) Park, S. ; Brookhart, M. Chem. Commun. 2011, 47, 3643.

    11. [11]

      Mets nen, T. T.; Hrobárik, P.; Klare, H. F. T.; Kaupp, M.; Oestreich, M. J. Am. Chem. Soc. 2014, 136, 6912.  doi: 10.1021/ja503254f

    12. [12]

      Herein we examine the first cleavage of EtOEt. The cleavage of the silyl ether could also be achieved (the second cleavage) if lengthen the reaction time.

    13. [13]

      Yang, J.; White, P. S.; Schauer, C. K.; Brookhart, M. Angew. Chem., Int. Ed. 2008, 47, 4141.  doi: 10.1002/(ISSN)1521-3773

    14. [14]

      Perutz, R. N.; Sabo-Etienne, S. Angew. Chem., Int. Ed. 2007, 46, 2578.  doi: 10.1002/(ISSN)1521-3773

    15. [15]

      (a) Lin, Z. Chem. Soc. Rev. 2002, 31, 239. (b) Chung, L. W. ; Lee, H. G. ; Lin, Z. ; Wu, Y. -D. J. Org. Chem. 2006, 71, 6000. (c) Lee, T. Y. ; Dang, L. ; Zhou, Z. ; Yeung, C. H. ; Lin, Z. ; Lau, C. P. Eur. J. Inorg. Chem. 2010, 5675.

    16. [16]

      Rendler, S.; Oestreich, M. Angew. Chem., Int. Ed. 2008, 47, 5997.  doi: 10.1002/anie.v47:32

    17. [17]

      (a) Wang, W. ; Gu, P. ; Wang, Y. ; Wei, H. Organometallics 2014, 33, 847. (b) Sakata, K. ; Fujimoto, H. J. Org. Chem. 2013, 78, 12505.

    18. [18]

      Cheng, Y.-H.; Zhao, X.; Song, K.-S.; Liu, L.; Guo, Q.-X. J. Org. Chem. 2002, 67, 6638.  doi: 10.1021/jo020085h

    19. [19]

      Anderson, K. M.; Orpen, A. G. Chem. Commun. 2001, 24, 2682.
       

    20. [20]

      The DFT method leads to an overestimation of entropy, resulting in an overestimation of the free energy. This phenomenon has also appeared in previous theoretical calculations. For example: (a) Ding, L. ; Ishida, N. ; Murakami, M. ; Morokuma, K. J. Am. Chem. Soc. 2014, 136, 169. (b) Sugiyama, A. ; Ohnishi, Y. -Y. ; Nakaoka, M. ; Nakao, Y. ; Sato, H. ; Sakaki, S. ; Nakao, Y. ; Hiyama, T. J. Am. Chem. Soc. 2008, 130, 12975. (c) Yu, Z. -X. ; Houk, K. N. J. Am. Chem. Soc. 2003, 125, 13825. (d) Hermans, J. ; Wang, L. J. Am. Chem. Soc. 1997, 119, 2707. (e) Tanaka, R. ; Yamashita, M. ; Chung, L. W. ; Morokuma, K. ; Nozaki, K. Organometallics 2011, 30, 6742. (f) Dub, P. A. ; Ikariya, T. J. Am. Chem. Soc. 2013, 135, 2604. (g) Strajbl, M. ; Sham, Y. Y. ; Villà, J. ; Chu, Z. -T. ; Warshel, A. J. Phys. Chem. B 2000, 104, 4578. (h) Hermans, J. ; Wang, L. J. Am. Chem. Soc. 1997, 119, 2707.

    21. [21]

      Gorelsky, S. I.; Lapointe, D.; Fagnou, K. J. Am. Chem. Soc. 2008, 130, 10848.  doi: 10.1021/ja802533u

    22. [22]

      Zhang, Q.; Yu, H.-Z.; Shi, J. Acta Phys.-Chim. Sin. 2013, 29, 2321.  doi: 10.3866/PKU.WHXB201310082

    23. [23]

      Zhang, Q.; Yu, H.-Z.; Fu, Y. Organometallics 2016, 35, 2473.  doi: 10.1021/acs.organomet.6b00347

    24. [24]

      Hydride is dissociated in the calculation of Ir-H(2) bond dissociation energy. See reference herein: Qi, X. -J. ; Liu, L. ; Fu, Y. ; Guo, Q. -X. Organometallics 2006, 25, 5879.

    25. [25]

      Gaussian 09, revision D. 01; Gaussian, Inc., Wallingford, CT, 2013.

    26. [26]

      Zhao, Y.; Truhlar, D. G. Theor. Chem. Acc. 2008, 120, 215.  doi: 10.1007/s00214-007-0310-x

    27. [27]

    28. [28]

      Zhang, Q.; Yu, H.-Z.; Fu, Y. Org. Chem. Front. 2014, 1, 614.  doi: 10.1039/C4QO00036F

    29. [29]

      Fukui, K. J. Phys. Chem. 1970, 74, 4161.  doi: 10.1021/j100717a029

    30. [30]

      Fukui, K. Acc. Chem. Res. 1981, 14, 363.  doi: 10.1021/ar00072a001

    31. [31]

      Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. J. Phys. Chem. B 2009, 113, 6378.  doi: 10.1021/jp810292n

    32. [32]

      Ehlers, A. W.; Bohme, M.; Dapprich, S.; Gobbi, A.; Hollwarth, A.; Jonas, V.; Kohler, K. F.; Stegmann, R.; Veldkamp, A.; Frenking, G. Chem. Phys. Lett. 1993, 208, 111.  doi: 10.1016/0009-2614(93)80086-5

    33. [33]

      Hollwarth, A.; Bohme, M.; Dapprich, S.; Ehlers, A. W.; Gobbi, A.; Jonas, V.; Kohler, K. F.; Stegmann, R.; Veldkamp, A.; Frenking, G. Chem. Phys. Lett. 1993, 208, 237.  doi: 10.1016/0009-2614(93)89068-S

  • 加载中
    1. [1]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    2. [2]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    3. [3]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    4. [4]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    5. [5]

      Qingcui Yang Wen Liu Li Cao Chen Tang Bing Xu Jie Zhao . For Entropy Hurts: Life Thrives on Negative Entropy. University Chemistry, 2024, 39(9): 151-156. doi: 10.12461/PKU.DXHX202402029

    6. [6]

      Qin Hou Jiayi Hou Aiju Shi Xingliang Xu Yuanhong Zhang Yijing Li Juying Hou Yanfang Wang . Preparation of Cuprous Iodide Coordination Polymer and Fluorescent Detection of Nitrite: A Comprehensive Chemical Design Experiment. University Chemistry, 2024, 39(8): 221-229. doi: 10.3866/PKU.DXHX202312056

    7. [7]

      Keweiyang Zhang Zihan Fan Liyuan Xiao Haitao Long Jing Jing . Unveiling Crystal Field Theory: Preparation, Characterization, and Performance Assessment of Nickel Macrocyclic Complexes. University Chemistry, 2024, 39(5): 163-171. doi: 10.3866/PKU.DXHX202310084

    8. [8]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    9. [9]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    10. [10]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    11. [11]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

    12. [12]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    13. [13]

      Jianyin He Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030

    14. [14]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    15. [15]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    16. [16]

      Lijun Dong Pengcheng Du Guangnong Lu Wei Wang . Exploration and Practice of Independent Design Experiments in Inorganic and Analytical Chemistry: A Case Study of “Preparation and Composition Analysis of Tetraammine Copper(II) Sulfate”. University Chemistry, 2024, 39(4): 361-366. doi: 10.3866/PKU.DXHX202310041

    17. [17]

      Meiyu Lin Yuxin Fang Songzhang Shen Yaqian Duan Wenyi Liang Chi Zhang Juan Su . Exploration and Implementation of a Dual-Pathway Blended Teaching Model in General Chemistry Experiment Course: A Case Study of Copper Glycine Synthesis and Its Thermal Analysis. University Chemistry, 2024, 39(8): 48-53. doi: 10.3866/PKU.DXHX202312042

    18. [18]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    19. [19]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    20. [20]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

Metrics
  • PDF Downloads(2)
  • Abstract views(2853)
  • HTML views(395)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return