Citation: Zhao Cong, Ma Ying, Wang Yang, Zhou Xue, Li Huizeng, Li Mingzhu, Song Yanlin. Research Progress of Photonic Crystal Solar Cells[J]. Acta Chimica Sinica, ;2018, 76(1): 9-21. doi: 10.6023/A17070320 shu

Research Progress of Photonic Crystal Solar Cells

  • Corresponding author: Ma Ying, may171@iccas.ac.cn Li Mingzhu, mingzhu@iccas.ac.cn
  • Received Date: 16 July 2017
    Available Online: 10 January 2017

    Fund Project: the National Natural Science Foundation of China 51573192the National Natural Science Foundation of China 51473173Project supported by the National Natural Science Foundation of China (Nos. 21522308, 21103112, 51573192, 51473173 and 21421061), the Natural Science Foundation of Liaoning Province (No. 20170540768), and China Postdoctoral Science Foundation (No. 2014M560225)the Natural Science Foundation of Liaoning Province 20170540768the National Natural Science Foundation of China 21522308the National Natural Science Foundation of China 21421061China Postdoctoral Science Foundation 2014M560225the National Natural Science Foundation of China 21103112

Figures(16)

  • Photonic crystals have been widely used in solar cells in recent years, owing to the characteristic photonic bandgap, "slow photon" effect and a series of unique light control performance. The introduction of photonic crystals can greatly optimize the propagation and distribution of light in solar cells. Photonic crystals can improve the performance of solar cells from five aspects:(1) Photonic crystals constructed as back mirrors to reduce light loss and increase absorption efficiency of solar cell. (2) The interaction between photons and sensitizers can be enhanced by the "slow photon effect" of the photonic crystal band gap, which enhances the excitation efficiency. (3) Photonic crystal can be used as a scattering layer, increasing the propagation path of light in the material, forming a resonance enhancement mode in the absorption layer, and improving the light absorption efficiency. (4) Photonic crystals have large specific surface area. Especially three-dimensional photonic crystals can provide excellent carrier for sensitizer, which can effectively increase the load and activity of sensitized molecules and improve the photoelectric conversion efficiency (5) Photonic crystals can be used to reduce the dependence of solar cells on the incident angle of sunlight. For example, when the incident light is tilted, the blue shift of the Bragg position results in more overlap with the dye absorption peak, generating a higher efficiency that partially compensates the reduced photon flux due to light inclination. However, photonic crystals in different locations of the solar cell will improve or inhibit photoelectric conversion efficiency. Therefore, the fully understanding of light manipulation of photonic crystals and their correctly application is the key to improve the photoelectric conversion efficiency. Here, the applications of different types of photonic crystals in silicon solar cells and sensitized solar cells are summarized, at the same time the possible problems are also analyzed and reviewed.
  • 加载中
    1. [1]

      Grätzel, M. Nature 2001, 414, 338.  doi: 10.1038/35104607

    2. [2]

      Yu, M.; Long, Y.-Z.; Sun, B.; Fan, Z. Nanoscale 2012, 4, 2783.  doi: 10.1039/c2nr30437f

    3. [3]

      Chung, I.; Lee, B.; He, J.; Chang, R. P. H.; Kanatzidis, M. G. Nature 2012, 485, 486.  doi: 10.1038/nature11067

    4. [4]

      Polman, A.; Atwater, H. A. Nat. Mater. 2012, 11, 174.  doi: 10.1038/nmat3263

    5. [5]

      Graetzel, M.; Janssen, R. A. J.; Mitzi, D. B.; Sargent, E. H. Nature 2012, 488, 304.  doi: 10.1038/nature11476

    6. [6]

      Yu, E. T.; Van De Lagemaat, J. MRS Bull. 2011, 36, 424.  doi: 10.1557/mrs.2011.109

    7. [7]

      John, S. Phys. Rev. Lett. 1987, 58, 2486.  doi: 10.1103/PhysRevLett.58.2486

    8. [8]

      Yablonovitch, E. Phys. Rev. Lett. 1987, 58, 2059.  doi: 10.1103/PhysRevLett.58.2059

    9. [9]

      Akahane, Y.; Asano, T.; Song, B.-S.; Noda, S. Nature 2003, 425, 944.  doi: 10.1038/nature02063

    10. [10]

      Mekis, A.; Chen, J.; Kurland, I.; Fan, S.; Villeneuve, P. R.; Joannopoulos, J. Phys. Rev. Lett. 1996, 77, 3787.  doi: 10.1103/PhysRevLett.77.3787

    11. [11]

      Joannopoulos, J. D.; Villeneuve, P. R.; Fan, S. Nature 1997, 386, 143.  doi: 10.1038/386143a0

    12. [12]

      Arsenault, A.; Fleischhaker, F.; Von Freymann, G.; Kitaev, V.; Miguez, H.; Mihi, A.; Tétreault, N.; Vekris, E.; Manners, I.; Aitchison, S.; Perovic, D.; Ozin, G. A. Adv. Mater. 2006, 18, 2779.  doi: 10.1002/(ISSN)1521-4095

    13. [13]

      Braun, P. V.; Rinne, S. A.; García-Santamaría, F. Adv. Mater. 2006, 18, 2665.  doi: 10.1002/(ISSN)1521-4095

    14. [14]

      Chen, J. I. L.; Von Freymann, G.; Choi, S. Y.; Kitaev, V.; Ozin, G. A. J. Mater. Chem. 2008, 18, 369.  doi: 10.1039/B708474A

    15. [15]

      Nishimura, S.; Abrams, N.; Lewis, B. A.; Halaoui, L. I.; Mallouk, T. E.; Benkstein, K. D.; Van De Lagemaat, J.; Frank, A. J. J. Am. Chem. Soc. 2003, 125, 6306.  doi: 10.1021/ja034650p

    16. [16]

      Nojima, S. J. Appl. Phys. 2001, 90, 545.  doi: 10.1063/1.1379354

    17. [17]

      Bermel, P.; Luo, C.; Zeng, L.; Kimerling, L. C.; Joannopoulos, J. D. Opt. Express 2007, 15, 16986.  doi: 10.1364/OE.15.016986

    18. [18]

      Chen, J. I.; Von Freymann, G.; Choi, S. Y.; Kitaev, V.; Ozin, G. A. J. Mater. Chem. 2008, 18, 369.  doi: 10.1039/B708474A

    19. [19]

      O'brien, P. G.; Kherani, N. P.; Chutinan, A.; Ozin, G. A.; John, S.; Zukotynski, S. Adv. Mater. 2008, 20, 1577.  doi: 10.1002/(ISSN)1521-4095

    20. [20]

      Herzinger, C. M.; Johs, B.; Mcgahan, W. A.; Woollam, J. A.; Paulson, W. J. Appl. Phys. 1998, 83, 3323.  doi: 10.1063/1.367101

    21. [21]

      Wan, L.; Zhang, M.; Wang, J.; Jiang, L. Acta Chim. Sinica 2016, 74, 639.
       

    22. [22]

      Yang, K.-H.; Yang, J.-Y. Sol. Energy 2009, 83, 2050.  doi: 10.1016/j.solener.2009.08.003

    23. [23]

      Campbell, P.; Green, M. A. J. Appl. Phys. 1987, 62, 243.  doi: 10.1063/1.339189

    24. [24]

      Feitknecht, L.; Steinhauser, J.; Schlüchter, R.; Fa , S.; Dominé, D.; Vallat-Sauvin, E.; Meillaud, F.; Ballif, C.; Shah, A. In Technical digest of the 15th International Photovoltaic Science and Engineering Conference, EPFL, Shanghai, 2005, pp. 473~474.

    25. [25]

      Bender, H.; Szlufcik, J.; Nussbaumer, H.; Palmers, G.; Evrard, O.; Nijs, J.; Mertens, R.; Bucher, E.; Willeke, G. Appl. Phys. Lett. 1993, 62, 2941.  doi: 10.1063/1.109628

    26. [26]

      Gale, M. T.; Curtis, B. J.; Kiess, H. G.; Morf, R. H. In The International Congress on Optical Science and Engineering, SPIE, Hague, 1990, pp. 60~66.

    27. [27]

      Feng, N.-N.; Michel, J.; Zeng, L.; Liu, J.; Hong, C.-Y.; Kimerling, L. C.; Duan, X. IEEE Trans. Electron Devices 2007, 54, 1926.  doi: 10.1109/TED.2007.900976

    28. [28]

      Zaidi, S. H.; Marquadt, R.; Minhas, B.; Tringe, J. In Photovoltaic Specialists Conference, 2002. Conference Record of the Twenty-Ninth IEEE, IEEE, New Orleans, 2002, pp. 1290~1293.

    29. [29]

      Virtanen, H.; Aho, A. T.; Viheriälä, J.; Korpijärvi, V. M.; Uusitalo, T.; Koskinen, M.; Dumitrescu, M.; Guina, M. IEEE Photonics Technol. Lett. 2017, 29, 114.  doi: 10.1109/LPT.2016.2629512

    30. [30]

      Zhao, X.; Zhang, Y.; Zhang, Q.; Zou, B.; Schwingenschlogl, U. Sci. Rep. 2016, 6, 21125.  doi: 10.1038/srep21125

    31. [31]

      Mitra, S.; Ghosh, H.; Saha, H.; Kumar Datta, S.; Chaudhuri, P.; Banerjee, C. Opt. Commun. 2017, 397, 1.  doi: 10.1016/j.optcom.2017.03.070

    32. [32]

      Mellor, A.; Hylton, N. P.; Maier, S. A.; Ekins-Daukes, N. Sol. Energy Mater. Sol. Cells 2017, 159, 212.  doi: 10.1016/j.solmat.2016.09.005

    33. [33]

      Mihi, A.; Miguez, H. J. Phys. Chem. B 2005, 109, 15968.  doi: 10.1021/jp051828g

    34. [34]

      Zeng, L.; Yi, Y.; Hong, C.-Y.; Duan, X.; Kimerling, L. C. MRS Online Proc. Libr. 2011, 862,

    35. [35]

      Zeng, L.; Yi, Y.; Hong, C.; Liu, J.; Feng, N.; Duan, X.; Kimerling, L. C.; Alamariu, B. A. Appl. Phys. Lett. 2006, 89, 111111.  doi: 10.1063/1.2349845

    36. [36]

      Colodrero, S.; Mihi, A.; Häggman, L.; Oca a, M.; Boschloo, G.; Hagfeldt, A.; Míguez, H. Adv. Mater. 2009, 21, 764.  doi: 10.1002/adma.v21:7

    37. [37]

      Colodrero, S.; Forneli, A.; López-López, C.; Pellejà, L.; Míguez, H.; Palomares, E. Adv. Funct. Mater. 2012, 22, 1303.  doi: 10.1002/adfm.v22.6

    38. [38]

      Colonna, D.; Colodrero, S.; Lindstrom, H.; Di Carlo, A.; Miguez, H. Energy Environ. Sci. 2012, 5, 8238.  doi: 10.1039/c2ee02658a

    39. [39]

      Colodrero, S.; Oca a, M.; Míguez, H. Langmuir 2008, 24, 4430.  doi: 10.1021/la703987r

    40. [40]

      Lopez-Lopez, C.; Colodrero, S.; Miguez, H. Phys. Chem. Chem. Phys. 2014, 16, 663.  doi: 10.1039/C3CP53939C

    41. [41]

      Zhang, X.-L.; Song, J.-F.; Li, X.-B.; Feng, J.; Sun, H.-B. Appl. Phys. Lett. 2012, 101, 243901.  doi: 10.1063/1.4770316

    42. [42]

      Lee, M. M.; Teuscher, J.; Miyasaka, T.; Murakami, T. N.; Snaith, H. J. Science 2012, 338, 643.  doi: 10.1126/science.1228604

    43. [43]

      Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. J. Am. Chem. Soc. 2009, 131, 6050.  doi: 10.1021/ja809598r

    44. [44]

      Mcmeekin, D. P.; Sadoughi, G.; Rehman, W.; Eperon, G. E.; Saliba, M.; H rantner, M. T.; Haghighirad, A.; Sakai, N.; Korte, L.; Rech, B.; Johnston, M. B.; Herz, L. M.; Snaith, H. J. Science 2016, 351, 151.  doi: 10.1126/science.aad5845

    45. [45]

      Jiang, Q.; Zhang, L.; Wang, H.; Yang, X.; Meng, J.; Liu, H.; Yin, Z.; Wu, J.; Zhang, X.; You, J. Nat. Energy 2016, 2, 16177.  doi: 10.1038/nenergy.2016.177

    46. [46]

      Fei, C.; Li, B.; Zhang, R.; Fu, H.; Tian, J.; Cao, G. Adv. Energy Mater. 2017, 7, 1602017.  doi: 10.1002/aenm.v7.9

    47. [47]

      Zhou, H.; Chen, Q.; Li, G.; Luo, S.; Song, T.-B.; Duan, H.-S.; Hong, Z.; You, J.; Liu, Y.; Yang, Y. Science 2014, 345, 542.  doi: 10.1126/science.1254050

    48. [48]

      Heo, J. H.; Im, S. H.; Noh, J. H.; Mandal, T. N.; Lim, C.-S.; Chang, J. A.; Lee, Y. H.; Kim, H.-J.; Sarkar, A.; Nazeeruddinmd, K.; Grätzel, M.; Seok, S. I. Nat. Photonics 2013, 7, 486.  doi: 10.1038/nphoton.2013.80

    49. [49]

      Jeon, N. J.; Noh, J. H.; Yang, W. S.; Kim, Y. C.; Ryu, S.; Seo, J.; Seok, S. I. Nature 2015, 517, 476.  doi: 10.1038/nature14133

    50. [50]

      Pellet, N.; Gao, P.; Gregori, G.; Yang, T.-Y.; Nazeeruddin, M. K.; Maier, J.; Grätzel, M. Angew. Chem. Int. Ed. 2014, 53, 3151.  doi: 10.1002/anie.201309361

    51. [51]

      Chakraborty, S.; Xie, W.; Mathews, N.; Sherburne, M.; Ahuja, R.; Asta, M.; Mhaisalkar, S. G. ACS Energy Lett. 2017, 2, 837.  doi: 10.1021/acsenergylett.7b00035

    52. [52]

      Wang, B.; Xiao, X.; Chen, T. Nanoscale 2014, 6, 12287.  doi: 10.1039/C4NR04144E

    53. [53]

      Noh, J. H.; Im, S. H.; Heo, J. H.; Mandal, T. N.; Seok, S. I. Nano Lett. 2013, 13, 1764.  doi: 10.1021/nl400349b

    54. [54]

      Eperon, G. E.; Stranks, S. D.; Menelaou, C.; Johnston, M. B.; Herz, L. M.; Snaith, H. J. Energy Environ. Sci. 2014, 7, 982.  doi: 10.1039/c3ee43822h

    55. [55]

      Zhang, W.; Anaya, M.; Lozano, G.; Calvo, M. E.; Johnston, M. B.; Míguez, H.; Snaith, H. J. Nano Lett. 2015, 15, 1698.  doi: 10.1021/nl504349z

    56. [56]

      Ramos, F. J.; Oliva-Ramirez, M.; Nazeeruddin, M. K.; Graetzel, M.; Gonzalez-Elipe, A. R.; Ahmad, S. J. Mater. Chem. A 2016, 4, 4962.  doi: 10.1039/C5TA08743K

    57. [57]

      Li, Y.; Qi, L. Acta Chim. Sinica 2015, 73, 869.
       

    58. [58]

      Umh, H. N.; Yu, S.; Kim, Y. H.; Lee, S. Y.; Yi, J. ACS Appl. Mater. Interfaces 2016, 8, 15802.  doi: 10.1021/acsami.6b03717

    59. [59]

      Qin, M.; Li, X.; Zheng, Y.; Zhang, Y.; Li, C. Acta Chim. Sinica 2015, 73, 1161.
       

    60. [60]

      Xie, K.; Guo, M.; Huang, H. J. Mater. Chem. C 2015, 3, 10665.  doi: 10.1039/C5TC02121A

    61. [61]

      Yip, C. T.; Huang, H.; Zhou, L.; Xie, K.; Wang, Y.; Feng, T.; Li, J.; Tam, W. Y. Adv. Mater. 2011, 23, 5624.  doi: 10.1002/adma.v23.47

    62. [62]

      Osterloh, F. E. Chem. Soc. Rev. 2013, 42, 2294.  doi: 10.1039/C2CS35266D

    63. [63]

      Subramanian, A.; Wang, H.-W. Appl. Surf. Sci. 2012, 258, 6479.  doi: 10.1016/j.apsusc.2012.03.064

    64. [64]

      Yang, S.; Xue, H.; Wang, H.; Kou, H.; Wang, J.; Zhu, G. J. Phys. Chem. Solids 2012, 73, 911.  doi: 10.1016/j.jpcs.2012.02.027

    65. [65]

      Zhang, X.; Liu, F.; Huang, Q.-L.; Zhou, G., Wang, Z.-S. J. Phys. Chem. C 2011, 115, 12665.  doi: 10.1021/jp201853c

    66. [66]

      Cottineau, T.; Béalu, N.; Gross, P.-A.; Pronkin, S. N.; Keller, N.; Savinova, E. R.; Keller, V. J. Mater. Chem. A 2013, 1, 2151.  doi: 10.1039/C2TA00922F

    67. [67]

      Guo, M.; Xie, K.; Wang, Y.; Zhou, L.; Huang, H. Sci. Rep. 2014, 4, 6442.
       

    68. [68]

      Guo, M.; Xie, K.; Lin, J.; Yong, Z.; Yip, C. T.; Zhou, L.; Wang, Y.; Huang, H. Energy Environ. Sci. 2012, 5, 9881.  doi: 10.1039/c2ee22854h

    69. [69]

      Guo, M.; Xie, K.; Liu, X.; Wang, Y.; Zhou, L.; Huang, H. Nanoscale 2014, 6, 13060.  doi: 10.1039/C4NR03712J

    70. [70]

      Meng, K.; Gao, S.; Wu, L.; Wang, G.; Liu, X.; Chen, G.; Liu, Z.; Chen, G. Nano Lett. 2016, 16, 4166.  doi: 10.1021/acs.nanolett.6b01046

    71. [71]

      Horantner, M. T.; Zhang, W.; Saliba, M.; Wojciechowski, K.; Snaith, H. J. Energy Environ. Sci. 2015, 8, 2041.  doi: 10.1039/C5EE01169H

    72. [72]

      Zhang, L.; H rantner, M. T.; Zhang, W.; Yan, Q.; Snaith, H. J. Sol. Energy Mater. Sol. Cells 2017, 160, 193.  doi: 10.1016/j.solmat.2016.10.035

    73. [73]

      Kang, S. M.; Jang, S.; Lee, J.-K.; Yoon, J.; Yoo, D.-E.; Lee, J.-W.; Choi, M.; Park, N.-G. Small 2016, 12, 2443.  doi: 10.1002/smll.201600428

    74. [74]

      Tavakoli, M. M.; Tsui, K.-H.; Zhang, Q.; He, J.; Yao, Y.; Li, D.; Fan, Z. ACS Nano 2015, 9, 10287.  doi: 10.1021/acsnano.5b04284

    75. [75]

      Heo, S. Y.; Koh, J. K.; Kang, G.; Ahn, S. H.; Chi, W. S.; Kim, K.; Kim, J. H. Adv. Energy Mater. 2014, 4, 1300632.  doi: 10.1002/aenm.201300632

    76. [76]

      Mihi, A.; Calvo, M. E.; Anta, J.; Miguez, H. J. Phys. Chem. C 2008, 112, 13.  doi: 10.1021/jp7105633

    77. [77]

      Yip, C.-H.; Chiang, Y.-M.; Wong, C.-C. J. Phys. Chem. C 2008, 112, 8735.  doi: 10.1021/jp801385k

    78. [78]

      Halaoui, L. I.; Abrams, N. M.; Mallouk, T. E. J. Phys. Chem. B 2005, 109, 6334.  doi: 10.1021/jp044228a

    79. [79]

      Mihi, A.; Míguez, H.; Rodríguez, I.; Rubio, S.; Meseguer, F. Phys. Rev. B 2005, 71, 125131.  doi: 10.1103/PhysRevB.71.125131

    80. [80]

      Lee, S.-H. A.; Abrams, N. M.; Hoertz, P. G.; Barber, G. D.; Halaoui, L. I.; Mallouk, T. E. J. Phys. Chem. B 2008, 112, 14415.  doi: 10.1021/jp802692u

    81. [81]

      Guldin, S.; Huttner, S.; Kolle, M.; Welland, M. E.; Muller-Buschbaum, P.; Friend, R. H.; Steiner, U.; Tetreault, N. Nano Lett. 2010, 10, 2303.  doi: 10.1021/nl904017t

    82. [82]

      Diguna, L. J.; Shen, Q.; Kobayashi, J.; Toyoda, T. Appl. Phys. Lett. 2007, 91, 023116.  doi: 10.1063/1.2757130

    83. [83]

      Xiao, J.; Huang, Q.; Xu, J.; Li, C.; Chen, G.; Luo, Y.; Li, D.; Meng, Q. J. Phys. Chem. C 2014, 118, 4007.  doi: 10.1021/jp411922e

    84. [84]

      Toyoda, T.; Shen, Q. J. Phys. Chem. Lett. 2012, 3, 1885.  doi: 10.1021/jz3004602

    85. [85]

      El Harakeh, M.; Halaoui, L. J. Phys. Chem. C 2010, 114, 2806.
       

    86. [86]

      Chen, X.; Yang, S.; Zheng, Y. C.; Chen, Y.; Hou, Y.; Yang, X. H.; Yang, H. G. Adv. Sci. 2015, 2, 1500105.  doi: 10.1002/advs.201500105

  • 加载中
    1. [1]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    2. [2]

      Xinxin JINGWeiduo WANGHesu MOPeng TANZhigang CHENZhengying WULinbing SUN . Research progress on photothermal materials and their application in solar desalination. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1033-1064. doi: 10.11862/CJIC.20230371

    3. [3]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    4. [4]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    5. [5]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    6. [6]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    7. [7]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

    8. [8]

      Xinyu ZENGGuhua TANGJianming OUYANG . Inhibitory effect of Desmodium styracifolium polysaccharides with different content of carboxyl groups on the growth, aggregation and cell adhesion of calcium oxalate crystals. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1563-1576. doi: 10.11862/CJIC.20230374

    9. [9]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    10. [10]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    11. [11]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    12. [12]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    13. [13]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    14. [14]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    15. [15]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    16. [16]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    17. [17]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    18. [18]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    19. [19]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

    20. [20]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

Metrics
  • PDF Downloads(69)
  • Abstract views(5289)
  • HTML views(1220)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return