Citation: Cui Liying, Fan Shasha, Yu Cunlong, Kuang Minxuan, Wang Jingxia. Research Progress on the Super-wettability of Colloidal Photonic[J]. Acta Chimica Sinica, ;2017, 75(10): 967-978. doi: 10.6023/A17070302 shu

Research Progress on the Super-wettability of Colloidal Photonic

  • Corresponding author: Wang Jingxia, jingxiawang@mail.ipc.ac.cn
  • Received Date: 5 July 2017
    Available Online: 4 October 2017

    Fund Project: Project supported by the National Natural Science Foundation of China (Nos. 51403076, 51673207, 51503214, 51373183)the National Natural Science Foundation of China 51373183the National Natural Science Foundation of China 51503214the National Natural Science Foundation of China 51403076the National Natural Science Foundation of China 51673207

Figures(9)

  • In recent years, the wettability of colloidal PCs has attracted much interest from researchers due to potential applications in printing, sensor, microfluidics and so on. In this paper, we present two kinds of research work related to PCs' wettability. On the one hand, the functional colloidal PCs have been fabricated from the modification of its wettability. Where, the wettability of PCs can be modified from superhydrophilic, superhydrophobic, amphiphilic, gradient wettability, controllable wettability and patterned wettability. Wettability is an important property of solid surface and can be generally controlled mainly by its surface chemical composition and surface topographic structure. Surface chemical composition determines surface free energy (i.e., hydrophilicity/hydrophobicity), while the surface topographic structure can amplify hydrophilicity or hydrophobicity, based on the Wenzel and modified Cassie equation. Thus, PCs with specific wettability have been fabricated based on their intrinsic, well-ordered surface topographic structure, and chemical composition. The superhydrophilic and superhydrophobic PCs have been achieved based on the amplification effect of the surface well-ordered topographic structure. The gradient PCs have been fabricated by changing the topographic structure. The PCs with controllable wettability can be obtained when introducing a responsive group onto PCs' surface. The underwater oil-adhesion properties of PCs have been controlled by varying the latex from spherical or cauliflower-like to single cavity. On the other hand, functional PCs are fabricated from the substrate with specific wettability. Typically, high-quality and crack free PCs are achieved from superhydrophobic substrate, pattern PCs from the hydrophilic-hydrophobic substrate, PC dome with excellent wide-angle property is fabricated from hydrophobic substrate. Otherwise, gas-liquid or liquid-liquid interface has also been included as a special substrate for the fabrication of functional PCs, such as flower-shape or cake-shaped Janus PCs. Colloidal photonic crystals (PCs), the periodic arrangement of monodispersed latex spheres, have attracted much interest from researchers due to their unique light manipulation properties. The combination of the special wettability and light manipulation properties of PCs will bring many novel properties and promising applications. Finally, the outlook and challenges for colloidal photonic crystals with special wettability are discussed. The work is of importance for the creation of novel functional materials.
  • 加载中
    1. [1]

      Young, T. Philos. Trans. R. Soc. London 1805, 95, 65.  doi: 10.1098/rstl.1805.0005

    2. [2]

      Wenzel, R. N. Ind. Eng. Chem. 1936, 28, 988.  doi: 10.1021/ie50320a024

    3. [3]

      Wenzel, R. N. J. Phys. Colloid Chem. 1949, 53, 1466.  doi: 10.1021/j150474a015

    4. [4]

      Cassie, A. B. D.; Baxter, S. Trans. Faraday Soc. 1944, 40, 546.  doi: 10.1039/tf9444000546

    5. [5]

      Feng, L.; Li, S. H.; Li, Y. S.; Li, H. J.; Zhang, L. J.; Zhai, J.; Song, Y. L.; Liu, B. Q.; Jiang, L.; Zhu, D. B. Adv. Mater. 2002, 14, 1857.  doi: 10.1002/adma.200290020

    6. [6]

      Zheng, Y. M.; Bai, H.; Huang, Z. B.; Tian, X. L.; Nie, F. Q.; Zhao, Y.; Zhai, J.; Jiang, L. Nature 2010, 463, 640.  doi: 10.1038/nature08729

    7. [7]

      Yao, X.; Song, Y. L.; Jiang, L. Adv. Mater. 2011, 23, 719.  doi: 10.1002/adma.201002689

    8. [8]

      Li, K.; Ju, J.; Xue, Z. X.; Ma, J.; Feng, L.; Gao, S.; Jiang, L. Nat. Commun. 2013, 4, 2276.
       

    9. [9]

      Tian, Y.; Su, B.; Jiang, L. Adv. Mater. 2014, 26, 6872.  doi: 10.1002/adma.v26.40

    10. [10]

      Wen, L. P.; Tian, Y.; Jiang, L. Angew. Chem., Int. Ed. 2015, 54, 3387.  doi: 10.1002/anie.201409911

    11. [11]

      Wang, S. T.; Liu, K. S.; Yao, X.; Jiang, L. Chem. Rev. 2015, 115, 8230.  doi: 10.1021/cr400083y

    12. [12]

      Su, B.; Tian, Y.; Jiang, L. J. Am. Chem. Soc. 2016, 138, 1727.  doi: 10.1021/jacs.5b12728

    13. [13]

      Zhang, P. C.; Lin, L.; Zang, D. M.; Guo, X. L.; Liu, M. J. Small 2017, 13, 1503334.  doi: 10.1002/smll.v13.4

    14. [14]

      Chang, B. S.; Zhang, B.; Sun, T. L. Small 2017, 13, 1503472.  doi: 10.1002/smll.v13.4

    15. [15]

      Liu, M. J.; Wang, S. T.; Jiang, L. Nat. Rev. Mater. 2017, 2, 17036.  doi: 10.1038/natrevmats.2017.36

    16. [16]

      Sato, O.; Kubo, S.; Gu, Z. Z. Acc. Chem. Res. 2009, 42, 1.  doi: 10.1021/ar700197v

    17. [17]

      Wang, J. X.; Zhang, Y. Z.; Zhao, T. Y.; Song, Y. L.; Jiang, L. Sci. China Chem. 2010, 53, 318.  doi: 10.1007/s11426-010-0033-z

    18. [18]

      Zhang, Y. Z.; Li, Z. R.; Zheng, Y. M.; Wang, J. X.; Song, Y. L.; Jiang, L. Acta Polym. Sin. 2010, 11, 1253.
       

    19. [19]

      Wang, J. X.; Zhang, Y. Z.; Wang, S. T.; Song, Y. L.; Jiang, L. Acc. Chem. Res. 2011, 44, 405.  doi: 10.1021/ar1001236

    20. [20]

      Shang, L. R.; Gu, Z. Z.; Zhao, Y. J. Mater. Today 2016, 19, 420.  doi: 10.1016/j.mattod.2016.03.004

    21. [21]

      Wan, L.; Zhang, M. B.; Wang, J. X.; Jiang, L. Acta Chim. Sinica 2016, 74, 639.
       

    22. [22]

      Kuang, M. X.; Wang, J. X.; Jiang, L. Chem. Soc. Rev. 2016, 45, 6833.  doi: 10.1039/C6CS00562D

    23. [23]

      Huang, Y.; Liu, M. J.; Wang, J. X.; Zhou, J. M.; Wang, L. B.; Song, Y. L.; Jiang, L. Adv. Funct. Mater. 2011, 21, 4436.  doi: 10.1002/adfm.v21.23

    24. [24]

      Snow, M.; Pring, A.; Self, P.; Losic, D.; Shapter, J. Am. Mineral. 2004, 89, 1353.  doi: 10.2138/am-2004-1001

    25. [25]

      Liu, F.; Dong, B. Q.; Liu, X. H.; Zheng, Y. M.; Zi, J. Opt. Express 2009, 17, 16183.  doi: 10.1364/OE.17.016183

    26. [26]

      Gu, Z. Z.; Fujishima, A.; Sato, O. Appl. Phys. Lett. 2004, 85, 5067.  doi: 10.1063/1.1825052

    27. [27]

      Li, Y.; Koshizaki, N.; Wang, H. Q.; Shimizu, Y. ACS Nano 2011, 5, 9403.  doi: 10.1021/nn203239n

    28. [28]

      Tian, E. T.; Ma, Y.; Cui, L. Y.; Wang, J. X.; Song, Y. L.; Jiang, L. Macromol. Rapid Commun. 2009, 30, 1719.  doi: 10.1002/marc.v30:20

    29. [29]

      Tian, E. T.; Wang, J. X.; Zheng, Y. M.; Song, Y. L.; Jiang, L.; Zhu, D. B. J. Mater. Chem. 2008, 18, 1116.  doi: 10.1039/b717368g

    30. [30]

      Yin, S. N.; Wang, C. F.; Liu, S. S.; Chen, S. J. Mater. Chem. C 2013, 1, 4685.

    31. [31]

      Xuan, R. Y.; Wu, Q. S.; Yin, Y. D.; Ge, J. P. J. Mater. Chem. 2011, 21, 3672.  doi: 10.1039/c0jm03790g

    32. [32]

      Huang, J.; Tao, C. A.; An, Q.; Zhang, W. X.; Wu, Y. G.; Li, X. S.; Shen, D. Z.; Li, G. T. Chem. Commun. 2010, 46, 967.  doi: 10.1039/B921280A

    33. [33]

      Huang, J.; Tao, C. A.; An, Q.; Lin, C. X.; Li, X. S; Xu, D.; Wu, Y. G.; Li, X. G.; Shen, D. Z.; Li, G. T. Chem. Commun. 2010, 46, 4103.  doi: 10.1039/c003325a

    34. [34]

      Wang, L. B.; Wang, J. X.; Huang, Y.; Liu, M. J.; Kuang, M. X.; Li, Y. F.; Jiang, L.; Song, Y. L. J. Mater. Chem. 2012, 22, 21405.  doi: 10.1039/c2jm33411a

    35. [35]

      Li, H. L.; Wang, J. X.; Yang, L. M.; Song, Y. L. Adv. Funct. Mater. 2008, 18, 3258.  doi: 10.1002/adfm.v18:20

    36. [36]

      Li, H. L.; Chang, L. X.; Wang, J. X.; Yang, L. M.; Song, Y. L. J. Mater. Chem. 2008, 18, 5098.  doi: 10.1039/b808675c

    37. [37]

      Gu, Z. Z.; Uetsuka, H.; Takahashi, K.; Nakajima, R.; Onishi, H.; Fujishima, A.; Sato, O. Angew. Chem., Int. Ed. 2003, 42, 894.  doi: 10.1002/anie.200390235

    38. [38]

      Shiu, J. Y.; Kuo, C. W.; Chen, P. L.; Mou, C. Y. Chem. Mater. 2004, 16, 561.  doi: 10.1021/cm034696h

    39. [39]

      Zhang, X. M.; Zhang, J. H.; Ren, Z. Y.; Li, X.; Zhang, X.; Zhu, D. F.; Wang, T. Q.; Tian, T.; Yang, B. Langmuir 2009, 25, 7375.  doi: 10.1021/la900258e

    40. [40]

      Zhang, G.; Wang, D. Y.; Gu, Z. Z.; Möhwald, H. Langmuir 2005, 21, 9143.  doi: 10.1021/la0511945

    41. [41]

      Xiu, Y. H.; Zhu, L. B.; Hess, D. W.; Wong, C. P. Langmuir 2006, 22, 9676.  doi: 10.1021/la061698i

    42. [42]

      Li, Y.; Li, C. C.; Cho, S. O.; Duan, G. T.; Cai, W. P. Langmuir 2007, 23, 9802.  doi: 10.1021/la700847c

    43. [43]

      Li, Y.; Huang, X. J.; Heo, S. H.; Li, C. C.; Choi, Y. K.; Cai, W. P.; Cho, S. O. Langmuir 2007, 23, 2169.  doi: 10.1021/la0620758

    44. [44]

      Yao, T. J.; Wang, C. X.; Lin, Q.; Li, X.; Chen, X. L.; Wu, J.; Zhang, J. H.; Yu, K.; Yang, B. Nanotechnology 2009, 20, 065304.  doi: 10.1088/0957-4484/20/6/065304

    45. [45]

      Gao, X. F.; Yan, X.; Yao, X.; Xu, L.; Zhang, K.; Zhang, J. H.; Yang, B.; Jiang, L. Adv. Mater. 2007, 19, 2213.  doi: 10.1002/(ISSN)1521-4095

    46. [46]

      Ge, H. L.; Song, Y. L.; Jiang, L.; Zhu, D. B. Thin Solid Films 2006, 515, 1539.  doi: 10.1016/j.tsf.2006.04.022

    47. [47]

      Zheng, Y. M.; Gao, X. F.; Jiang, L. Soft Matter 2007, 3, 178.  doi: 10.1039/B612667G

    48. [48]

      Yang, H. T.; Jiang, P. Langmuir 2010, 26, 12598.  doi: 10.1021/la1021643

    49. [49]

      Raza, M. A.; Kooij, E. S.; Silfhout, A. van; Poelsema, B. Langmuir 2010, 26, 12962.  doi: 10.1021/la101867z

    50. [50]

      Park, S. G.; Moon, J. H.; Jeon, H. C.; Yang, S. M. Soft Matter 2012, 8, 4567.  doi: 10.1039/c2sm07406k

    51. [51]

      Li, J.; Liang, G. Q.; Zhu, X. L.; Yang, S. Adv. Funct. Mater. 2012, 22, 2980.  doi: 10.1002/adfm.v22.14

    52. [52]

      Abid, M. I.; Wang, L.; Chen, Q. D.; Wang, X. W.; Juodkazis, S.; Sun, H. B. Laser Photonics Rev. 2017, 1600187.
       

    53. [53]

      Tuteja, A.; Choi, W.; Ma, M.; Mabry, J. M.; Mazzella, S. A.; Rutledge, G. C.; Mckinley, G. H.; Cohen, R. E. Science 2007, 318, 1618.  doi: 10.1126/science.1148326

    54. [54]

      Tuteja, A.; Choi, W.; Mabry, J. M.; Mckinley, G. H.; Cohen, R. E. Proc. Natl. Acad. Sci. U. S. A. 2008, 105, 18200.  doi: 10.1073/pnas.0804872105

    55. [55]

      Ellinas, K.; Tserepi, A.; Gogolides, E. Langmuir 2011, 27, 3960.  doi: 10.1021/la104481p

    56. [56]

      Liu, M. J.; Wang, S. T.; Wei, Z. X.; Song, Y. L.; Jiang, L. Adv. Mater. 2009, 21, 665.  doi: 10.1002/adma.v21:6

    57. [57]

      Chen, K. L.; Zhou, S. X.; Wu, L. M. ACS Nano 2016, 10, 1386.  doi: 10.1021/acsnano.5b06816

    58. [58]

      Vogel, N.; Belisle, R. A.; Hatton, B.; Wong, T. S.; Aizenberg, J. Nat. Commun. 2013, 4, 2167.
       

    59. [59]

      Kang, H.; Lee, J. S.; Chang, W. S.; Kim, S. H. Adv. Mater. 2015, 27, 1282.  doi: 10.1002/adma.201404706

    60. [60]

      Qiu, S.; Yin, H. C.; Zheng, J. T.; Jiang, B.; Wu, M. B.; Wu, W. T. Mater. Lett. 2014, 133, 40.  doi: 10.1016/j.matlet.2014.06.096

    61. [61]

      Dorvee, J. R.; Derfus, A. M.; Bhatia, S. N.; Sailor, M. J. Nat. Mater. 2004, 3, 896.  doi: 10.1038/nmat1253

    62. [62]

      Zhang, Y. Z.; Wang, J. X.; Huang, Y.; Song, Y. L.; Jiang, L. J. Mater. Chem. 2011, 21, 14113.  doi: 10.1039/c1jm10977d

    63. [63]

      Wang, J. X.; Wang, L. B.; Song, Y. L.; Jiang, L. J. Mater. Chem. C 2013, 1, 6048.  doi: 10.1039/c3tc30728j

    64. [64]

      Tian, D. L.; Song, Y. L.; Jiang, L. Chem. Soc. Rev. 2013, 42, 5184.  doi: 10.1039/c3cs35501b

    65. [65]

      Fujii, S.; Kappl, M.; Butt, H. J.; Sugimoto, T.; Nakamura, Y. Angew. Chem., Int. Ed. 2012, 51, 9809.  doi: 10.1002/anie.201204358

    66. [66]

      Zhu, W.; Yang, H. W.; Lan, Y.; Yin, X. P.; Wang, S. Q.; Wang, C.; Gao, N.; Li, G. T. Adv. Mater. Interfaces 2016, 3, 1600225.  doi: 10.1002/admi.201600225

    67. [67]

      Zhang, J. L.; Xue, L. J.; Han, Y. C. Langmuir 2005, 21, 5.  doi: 10.1021/la047584t

    68. [68]

      Thompson, C. M.; Ruminski, A. M.; Sega, A. G.; Sailor, M. J.; Miskelly, G. M. Langmuir 2011, 27, 8967.  doi: 10.1021/la201272e

    69. [69]

      Burgess, I. B.; Koay, N.; Raymond, K. P.; Kolle, M.; Lončar, M.; Aizenberg, J. ACS Nano 2012, 6, 1427.  doi: 10.1021/nn204220c

    70. [70]

      Raymond, K. P.; Burgess, I. B.; Kinney, M. H.; Lončar, M.; Aizenberg, J. Lab Chip 2012, 12, 3666.  doi: 10.1039/c2lc40489c

    71. [71]

      Hong, W.; Li, H. R.; Hu, X. B.; Zhao, B. Y.; Zhang, F.; Zhang, D.; Xu, Z. Chem. Commun. 2013, 49, 728.  doi: 10.1039/C2CC37780B

    72. [72]

      Wu, H.; Kuang, M. X.; Cui, L. Y.; Tian, D.; Wang, M. H.; Luan, G. Y.; Wang, J. X.; Jiang, L. Chem. Commun. 2016, 52, 5924.  doi: 10.1039/C6CC01442A

    73. [73]

      Xue, P. H.; Nan, J. J.; Wang, T. Q.; Wang, S. L.; Ye, S. S.; Zhang, J. H.; Cui, Z. C.; Yang, B. Small 2017, 13, 1601807.  doi: 10.1002/smll.v13.4

    74. [74]

      Wang, J. X.; Wen, Y. Q.; Feng, X. J.; Song, Y. L.; Jiang, L. Macromol. Rapid Commun. 2006, 27, 188.  doi: 10.1002/(ISSN)1521-3927

    75. [75]

      Wang, J. X.; Wen, Y. Q.; Hu, J. P.; Song, Y. L.; Jiang, L. Adv. Funct. Mater. 2007, 17, 219.  doi: 10.1002/(ISSN)1616-3028

    76. [76]

      Wang, J. X.; Hu, J. P.; Wen, Y. Q.; Song, Y. L.; Jiang, L. Chem. Mater. 2006, 18, 4984.  doi: 10.1021/cm061417s

    77. [77]

      Ge, H. L.; Wang, G. J.; He, Y. N.; Wang, X. G.; Song, Y. L.; Jiang, L.; Zhu, D. B. ChemPhysChem 2006, 7, 575.  doi: 10.1002/cphc.v7:3

    78. [78]

      Zhang, Y. Q.; Hao, X.; Zhou, J. M.; Zhang, Y. Z.; Wang, J. X.; Song, Y. L.; Jiang, L. Macromol. Rapid Commun. 2010, 31, 2115.  doi: 10.1002/marc.v31.24

    79. [79]

      Liu, J.; Jin, J.; Li, Y.; Huang, H. W.; Wang, C.; Wu, M.; Chen, L. H.; Su, B. L. J. Mater. Chem. A 2014, 2, 5051.  doi: 10.1039/c3ta15044e

    80. [80]

      Xu, L.; Wang, J. X.; Song, Y. L.; Jiang, L. Chem. Mater. 2008, 20, 3554.  doi: 10.1021/cm800444a

    81. [81]

      Chen, L. Y.; Lai, C. H.; Wu, P. W.; Fan, S. K. J. Electrochem. Soc. 2011, 158, P93.  doi: 10.1149/1.3594723

    82. [82]

      Qin, M. M.; Li, X.; Zheng, Y. P.; Zhang, Y.; Li, C. J. Acta Chim. Sinica 2015, 73, 1161.
       

    83. [83]

      Griffete, N.; Dybkowska, M.; Glebocki, B.; Basinska, T.; Connan, C.; Maître, A.; Chehimi, M. M.; Slomkowski, S.; Mangeney, C. Langmuir 2010, 26, 11550.  doi: 10.1021/la100537v

    84. [84]

      Han, G. Z.; Zhu, S.; Wu, S. R.; Pang, F. F. Acta Chim. Sinica 2012, 70, 1827.
       

    85. [85]

      Liu, J. C.; Wan, L.; Zhang, M. B.; Jiang, K. J.; Song, K.; Wang, J. X.; Ikeda, T.; Jiang, L. Adv. Funct. Mater. 2017, 27, 1605221.  doi: 10.1002/adfm.v27.7

    86. [86]

      Zhang, J. L.; Lu, X. Y.; Huang, W. H.; Han, Y. C. Macromol. Rapid Commun. 2005, 26, 477.  doi: 10.1002/(ISSN)1521-3927

    87. [87]

      Wang, T. Q.; Li, X.; Zhang, J. H.; Wang, X. Z.; Zhang, X. M.; Zhang, X.; Zhu, D. F.; Hao, Y. D.; Ren, Z. Y.; Yang, B. Langmuir 2010, 26, 13715.  doi: 10.1021/la1017505

    88. [88]

      Du, C. G.; Cui, L. Y.; Zhang, Y. Z.; Zhao, T. Y.; Wang, J. X.; Song, Y. L.; Jiang, L. J. Nanosci. Nanotechnol. 2010, 10, 7766.  doi: 10.1166/jnn.2010.2859

    89. [89]

      Xu, L.; Li, H.; Jiang, X.; Wang, J. X.; Li, L.; Song, Y. L.; Jiang, L. Macromol. Rapid Commun. 2010, 31, 1422.  doi: 10.1002/marc.201000156

    90. [90]

      Huang, Y.; Wang, J. X.; Zhou, J. M.; Xu, L.; Li, Z. R.; Zhang, Y. Z.; Wang, J. J.; Song, Y. L.; Jiang, L. Macromolecules 2011, 44, 2404.  doi: 10.1021/ma200169w

    91. [91]

      Ding, T.; Song, K.; Clays, K.; Tung, C. H. Adv. Mater. 2009, 21, 1936.  doi: 10.1002/adma.v21:19

    92. [92]

      Lv, H.; Lin, Q.; Zhang, K.; Yu, K.; Yao, T. J.; Zhang, X. H.; Zhang, J. H.; Yang, B. Langmuir 2008, 24, 13736.  doi: 10.1021/la802782w

    93. [93]

      Liu, C. H.; Ding, H. B.; Wu, Z. Q.; Gao, B. B.; Fu, F. F.; Shang, L. R.; Gu, Z. Z.; Zhao, Y. J. Adv. Funct. Mater. 2016, 26, 7937.  doi: 10.1002/adfm.v26.43

    94. [94]

      Burgess, I. B.; Mishchenko, L.; Hatton, B. D.; Kolle, M.; Lončar, M.; Aizenberg, J. J. Am. Chem. Soc. 2011, 133, 12430.  doi: 10.1021/ja2053013

    95. [95]

      Zhong, K.; Wang, L.; Li, J. Q.; Van Cleuvenbergen, S.; Bartic, C.; Song, K.; Clays, K. Langmuir 2017, 33, 4840.  doi: 10.1021/acs.langmuir.7b00955

    96. [96]

      Hong, W.; Li, H. R.; Hu, X. B.; Zhao, B. Y.; Zhang, F.; Zhang, D. Chem. Commun. 2012, 48, 4609.  doi: 10.1039/c2cc30927k

    97. [97]

      Sweetman, M. J.; Voelcker, N. H. RSC Adv. 2012, 2, 4620.  doi: 10.1039/c2ra20232h

    98. [98]

      Heo, Y.; Kang, H.; Lee, J. S.; Oh, Y. K.; Kim, S. H. Small 2016, 12, 3819.  doi: 10.1002/smll.v12.28

    99. [99]

      Yamaki, M.; Matsubara, K.; Nagayama, K. Langmuir 1993, 9, 3154.  doi: 10.1021/la00035a067

    100. [100]

      Denkov, N. D.; Velev, O. D.; Kralchevsky, P. A.; Ivanov, I. B.; Yoshimura, H.; Nagayama, K. Langmuir 1992, 8, 3183.  doi: 10.1021/la00048a054

    101. [101]

      Zhou, J. M.; Wang, J. X.; Huang, Y.; Liu, G. M.; Wang, L. B.; Chen, S. R.; Li, X. H.; Wang, D. J.; Song, Y. L.; Jiang, L. NPG Asia Mater. 2012, 4, e21.  doi: 10.1038/am.2012.38

    102. [102]

      Kim, S. H.; Lim, J. M.; Jeong, W. C.; Choi, D. G.; Yang, S. M. Adv. Mater. 2008, 20, 3211.  doi: 10.1002/adma.v20:17

    103. [103]

      Kuang, M. X.; Wang, J. X.; Bao, B.; Li, F. Y.; Wang, L. B.; Jiang, L.; Song, Y. L. Adv. Optical Mater. 2014, 2, 34.  doi: 10.1002/adom.201300369

    104. [104]

      Liu, M. J.; Wang, J. X.; He, M.; Wang, L. B.; Li, F. Y.; Jiang, L.; Song, Y. L. ACS Appl. Mater. Interfaces 2014, 6, 13344.  doi: 10.1021/am5042548

    105. [105]

      Bao, B.; Li, M. Z.; Li, Y.; Jiang, K. J.; Gu, Z. K.; Zhang, X. Y.; Jiang, L.; Song, Y. L. Small 2015, 11, 1649.  doi: 10.1002/smll.v11.14

    106. [106]

      Kawamura, A.; Kohri, M.; Yoshioka, S.; Taniguchi, T.; Kishikawa, K. Langmuir 2017, 33, 3824.  doi: 10.1021/acs.langmuir.7b00707

    107. [107]

      Choi, S.; Jamshidi, A.; Seok, T. J.; Wu, M. C.; Zohdi, T. I.; Pisano, A. P. Langmuir 2012, 28, 3102.  doi: 10.1021/la204362s

    108. [108]

      Ding, H. B.; Zhu, C.; Tian, L.; Liu, C. H.; Fu, G. B.; Shang, L. R.; Gu, Z. Z. ACS Appl. Mater. Interfaces 2017, 9, 11933.  doi: 10.1021/acsami.6b11409

    109. [109]

      Qin, M.; Huang, Y.; Li, Y. N.; Su, M.; Chen, B. D.; Sun, H.; Yong, P. Y.; Ye, C. Q.; Li, F. Y.; Song, Y. L. Angew. Chem., Int. Ed. 2016, 55, 6911.  doi: 10.1002/anie.201602582

    110. [110]

      Rastogi, V.; Melle, S.; Calderón, O. G.; Garcĺa, A. A.; Marquez, M.; Velev, O. D. Adv. Mater. 2008, 20, 4263.  doi: 10.1002/adma.v20:22

    111. [111]

      Rastogi, V.; Garcĺa, A. A.; Marquez, M.; Velev, O. D. Macromol. Rapid Commun. 2010, 31, 190.

    112. [112]

      Marín, Á. G.; Gelderblom, H.; Susarrey-Arce, A.; van Houselt, A.; Lefferts, L.; Gardeniers, J. G. E.; Lohse, D.; Snoeijer, J. H. Proc. Natl. Acad. Sci. U. S. A. 2012, 109, 16455.  doi: 10.1073/pnas.1209553109

    113. [113]

      Huang, Y.; Zhou, J. M.; Su, B.; Shi, L.; Wang, J. X.; Chen, S. R.; Wang, L. B.; Zi, J.; Song, Y. L.; Jiang, L. J. Am. Chem. Soc. 2012, 134, 17053.  doi: 10.1021/ja304751k

    114. [114]

      Zhou, J. M.; Yang, J.; Gu, Z. D.; Zhang, G. F.; Wei, Y.; Yao, X.; Song, Y. L.; Jiang, L. ACS Appl. Mater. Interfaces 2015, 7, 22644.  doi: 10.1021/acsami.5b07443

    115. [115]

      Gu, Z. Z.; Fujishima, A.; Sato, O. Angew. Chem., Int. Ed. 2002, 41, 2067.  doi: 10.1002/1521-3773(20020617)41:12<2067::AID-ANIE2067>3.0.CO;2-Z

    116. [116]

      Sun, W.; Jia, F.; Sun, Z. Q.; Zhang, J. H.; Li, Y.; Zhang, X.; Yang, B. Langmuir 2011, 27, 8018.  doi: 10.1021/la2002207

    117. [117]

      Huang, Y.; Li, F. Y.; Qin, M.; Jiang, L.; Song, Y. L. Angew. Chem., Int. Ed. 2013, 52, 7296.  doi: 10.1002/anie.201302311

    118. [118]

      Wu, L.; Dong, Z. C.; Kuang, M. X.; Li, Y. N.; Li, F. Y.; Jiang, L.; Song, Y. L. Adv. Funct. Mater. 2015, 25, 2237.  doi: 10.1002/adfm.201404559

    119. [119]

      Wang, Y. Z.; Wei, C.; Cong, H. L.; Yang, Q.; Wu, Y. C.; Su, B.; Zhao, Y. S.; Wang, J. X.; Jiang, L. ACS Appl. Mater. Interfaces 2016, 8, 4985.  doi: 10.1021/acsami.5b11945

    120. [120]

      Wang, M. H.; Meng, F. S.; Wu, H.; Wang, J. X. Crystals 2016, 6, 99.  doi: 10.3390/cryst6080099

    121. [121]

      Li, B.; Jiang, B. B.; Han, W.; He, M.; Li, X.; Wang, W.; Hong, S. W.; Byun, M.; Lin, S. L.; Lin, Z. Q. Angew. Chem., Int. Ed. 2017, 56, 4554.  doi: 10.1002/anie.201700457

    122. [122]

      Shen, W. Z.; Li, M. Z.; Ye, C. Q.; Jiang, L.; Song, Y. L. Lab Chip 2012, 12, 3089.  doi: 10.1039/c2lc40311k

    123. [123]

      Hou, J.; Zhang, H. C.; Yang, Q.; Li, M. Z.; Song, Y. L.; Jiang, L. Angew. Chem., Int. Ed. 2014, 53, 5791.  doi: 10.1002/anie.201400686

    124. [124]

      Hou, J.; Zhang, H. C.; Yang, Q.; Li, M. Z.; Jiang, L.; Song, Y. L. Small 2015, 11, 2738.  doi: 10.1002/smll.201403640

    125. [125]

      Griesebock, B.; Egen, M.; Zentel, R. Chem. Mater. 2002, 14, 4023.  doi: 10.1021/cm025613k

    126. [126]

      Zhang, J. T.; Wang, L. L.; Luo, J.; Tikhonov, A.; Kornienko, N.; Asher, S. A. J. Am. Chem. Soc. 2011, 133, 9152.  doi: 10.1021/ja201015c

    127. [127]

      Li, Y.; Qi, L. M. Acta Chim. Sinica 2015, 73, 869.
       

    128. [128]

      Wang, W. H.; Dong, J. Y.; Ye, X. Z.; Li, Y.; Ma, Y. R.; Qi, L. M. Small 2016, 12, 1469.  doi: 10.1002/smll.v12.11

    129. [129]

      Li, Y.; Ye, X. Z.; Ma, Y. R.; Qi, L. M. Small 2015, 11, 1183.  doi: 10.1002/smll.v11.9-10

    130. [130]

      Cai, J. H.; Chen, S. R.; Cui, L. Y.; Chen, C. C.; Su, B.; Dong, X.; Chen, P. L.; Wang, J. X.; Wang, D. J.; Song, Y. L.; Jiang, L. Adv. Mater. Interfaces 2015, 2, 1400365.  doi: 10.1002/admi.201400365

    131. [131]

      Cai, J. H.; Wang, T.; Wang, J. X.; Song, Y. L.; Jiang, L. J. Mater. Chem. C 2015, 3, 2445.  doi: 10.1039/C4TC02860K

    132. [132]

      Wang, T.; Kuang, M.; Jin, F.; Cai, J. H.; Shi, L.; Zheng, Y. M.; Wang, J. X.; Jiang, L. Chem. Commun. 2016, 52, 3619.  doi: 10.1039/C5CC10233B

    133. [133]

      Wang. T.; Chen, S. R.; Jin, F.; Cai, J. H.; Cui, L. Y.; Zheng, Y. M.; Wang, J. X.; Song, Y. L.; Jiang, L. Chem. Commun. 2015, 51, 1367.  doi: 10.1039/C4CC08045A

  • 加载中
    1. [1]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    2. [2]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    3. [3]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    4. [4]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    5. [5]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

    6. [6]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    7. [7]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    8. [8]

      Xinxin JINGWeiduo WANGHesu MOPeng TANZhigang CHENZhengying WULinbing SUN . Research progress on photothermal materials and their application in solar desalination. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1033-1064. doi: 10.11862/CJIC.20230371

    9. [9]

      Huan LIShengyan WANGLong ZhangYue CAOXiaohan YANGZiliang WANGWenjuan ZHUWenlei ZHUYang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088

    10. [10]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    11. [11]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    12. [12]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    13. [13]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    14. [14]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    15. [15]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    16. [16]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    17. [17]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    18. [18]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    19. [19]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    20. [20]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

Metrics
  • PDF Downloads(42)
  • Abstract views(3430)
  • HTML views(781)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return