Citation: Song Congying, Sun Xun, Ye Ke, Zhu Kai, Cheng Kui, Yan Jun, Cao Dianxue, Wang Guiling. Electrocatalytic Activity of MnO2 Supported on Reduced Graphene Oxide Modified Ni Foam for H2O2 Reduction[J]. Acta Chimica Sinica, ;2017, 75(10): 1003-1009. doi: 10.6023/A17070298 shu

Electrocatalytic Activity of MnO2 Supported on Reduced Graphene Oxide Modified Ni Foam for H2O2 Reduction

  • Corresponding author: Wang Guiling, wangguiling@hrbeu.edu.cn
  • Received Date: 4 July 2017
    Available Online: 4 October 2017

    Fund Project: Project supported by the National Natural Science Foundation of China (No. 51572052)the National Natural Science Foundation of China 51572052

Figures(9)

  • Fuel cells which use hydrogen peroxide as oxidant have been widely studied and presents good development foreground. As a liquid fuel, H2O2 possesses advantages of easily storage and transportation which make it can be widely used in underwater and space as a power source. At present, the most widely used catalysts for H2O2 electroreduction are noble metal catalysts. Compared with noble metals, transition metal oxides possess advantages of low cost and extensive sources. However, the catalytic activity of transition metal oxides is still much lower than noble metals. Therefore, many efforts should be made to improve the electrochemical performance of transition metal oxides. In this work, rGO is used as an additive to improve the electrochemcial performance of MnO2. An original electrode of MnO2 in-situ supported on reduced graphene oxide modified Ni foam (MnO2/rGO@Ni foam) is prepared through two-step hydrothermal methods. Primarily, the novel current collector of rGO@Ni foam is obtained with larger surface area which is beneficial to the next loading of MnO2. Secondly, MnO2 is grown on the rGO@Ni foam also by a hydrothermal treatment. Besides large surface area, the addition of rGO can provide more channels for electron transfer and then accelerate the reaction rate of H2O2 reduction. The morphology and phase composition of the as-prepared electrode are investigated by measurements of X-ray diffractometer (XRD), scanning electron microscopy (SEM) and transmission electron microscope (TEM). It can be concluded from SEM and TEM images, both rGO and MnO2 exhibit sheet-like structure and there are many gaps existing between these sheets. Especially, the as-prepared MnO2 nanosheets builds a honeycomb structure which makes positive effects on the contact between H2O2 and catalyst. And XRD and HRTEM results show that MnO2 and rGO are successfully prepared on Ni foam. The electrochemical performance of the MnO2/rGO@Ni foam electrode toward H2O2 reduction is investigated by cyclic voltammetry and chronoamperometry in a three-electrode system in solutions of NaOH and H2O2. Results reveal that the reduction current density of H2O2 reduction on the MnO2/rGO@Ni foam electrode reaches 240 mA/cm2 in a solution of 1.0 mol/L H2O2 and 3 mol/L NaOH at -0.8 V which is much higher than that on MnO2 directly supported on Ni foam (MnO2@Ni foam). At the same time, a better stability is also achieved on the MnO2/rGO@Ni foam electrode. Generally speaking, the addition of rGO highly improves the electrocatalytic activity and stability of the as-prepared electrode indicating great application prospect in the future.
  • 加载中
    1. [1]

      Chen, X.; Yan, H.; Xia, D. Acta Chim. Sinica 2017, 75, 189.  doi: 10.3969/j.issn.0253-2409.2017.02.008
       

    2. [2]

      Li, J.; Zhang, X.; Pan, B. Chin. J. Chem. 2016, 34, 1021.  doi: 10.1002/cjoc.v34.10

    3. [3]

      Sun, L. M.; Cao, D. X.; Wang, G. L.; Lu, Y. Z.; Zhang, M. L. Acta Phys. Chim. Sin. 2008, 24, 323.
       

    4. [4]

      Ma, J.; Choudhury, N. A.; Sahai, Y. Renew. Sust. Energ. Rev. 2010, 14, 183.  doi: 10.1016/j.rser.2009.08.002

    5. [5]

      Tian, Y. M.; Lei, T.; Wang, G. L.; Cao, D. X. Chem. J. Chin. Univ. 2011, 32, 2382.
       

    6. [6]

      Cheng, K.; Yang, F.; Yan, P.; Cao, D. X.; Yin, J. L.; Wang, G. L. Chem. J. Chin. Univ. 2014, 35, 110.  doi: 10.7503/cjcu20130504

    7. [7]

      Li, Z. P.; Liu, B. H.; Arai, K.; Suda, S. J. Electrochem. Soc. 2003, 150, A868.  doi: 10.1149/1.1576767

    8. [8]

      Sun, L. M.; Cao, D. X.; Wang, G. L. J. Appl. Electrochem. 2008, 38, 1415.  doi: 10.1007/s10800-008-9581-8

    9. [9]

      Flätgen, G.; Wasle, S.; Lübke, M.; Eickes, C.; Radhakrishnan, G.; Doblhofer, K.; Ertl, G. Electrochim. Acta 1999, 44, 4499.  doi: 10.1016/S0013-4686(99)00184-X

    10. [10]

      Gerlache, M.; Senturk, Z.; Quarin, G.; Kauffmann, J. M. Electroanal. 1997, 9, 1088.  doi: 10.1002/(ISSN)1521-4109

    11. [11]

      Luo, Y. F.; Li, H. Z.; Chen, T. T.; Ge, C. W.; Tang, Y. W.; Chen, Y.; Lu, T. H. Electrochim. Acta 2013, 87, 839.  doi: 10.1016/j.electacta.2012.09.018

    12. [12]

      Yang, F.; Cheng, K.; Wu, T. H.; Zhang, Y.; Yin, J. L.; Wang, G. L.; Cao, D. X. RSC Adv. 2013, 3, 5483.  doi: 10.1039/c3ra23415k

    13. [13]

      Wang, G. L.; Hao, S. Y.; Lu, T. H.; Cao, D. X.; Yin, C. L. Chem. J. Chin. Univ. 2010, 31, 2264.
       

    14. [14]

      Wang, G. L.; Cao, D. X.; Yin, C. L.; Gao, Y. Y.; Yin, J. L.; Cheng, L. Chem. Mater. 2009, 21, 5112.  doi: 10.1021/cm901928b

    15. [15]

      Cheng, F.; Shen, J.; Ji, W.; Tao, Z.; Chen, J. ACS Appl. Mater. Inter. 2009, 1, 460.  doi: 10.1021/am800131v

    16. [16]

      Ma, Y.; Wang, R.; Wang, H.; Key, J.; Ji, S. J. Power Sources 2015, 280, 526.  doi: 10.1016/j.jpowsour.2015.01.139

    17. [17]

      Roche, I.; Chaînet, E.; Chatenet, M.; Vondrák, J. J. Phys. Chem. C 2007, 111, 1434.  doi: 10.1021/jp0647986

    18. [18]

      Yan, P.; Zhang, D. M.; Cheng, K.; Xu, Y.; Li, Y. Y.; Ye, K.; Cao, D. X.; Wang, G. L. Chem. J. Chin. Univ. 2015, 36, 1801.
       

    19. [19]

      Quan, Q.; Lin, X.; Zhang, N.; Xu, Y. J. Nanoscale 2017, 9, 2398.  doi: 10.1039/C6NR09439B

    20. [20]

      Han, C.; Zhang, N.; Xu, Y. J. Nano Today 2016, 11, 351.  doi: 10.1016/j.nantod.2016.05.008

    21. [21]

      Yang, M. Q.; Zhang, N.; Wang, Y.; Xu, Y. J. J. Catal. 2017, 346, 21.  doi: 10.1016/j.jcat.2016.11.012

    22. [22]

      Hu, C.; Bai, Z.; Yang, L.; Lv, J.; Wang, K.; Guo, Y.; Cao, Y.; Zhou, J. Electrochim. Acta 2010, 55, 6036.  doi: 10.1016/j.electacta.2010.05.063

    23. [23]

      Cao, D.; Sun, L.; Wang, G.; Lv, Y.; Zhang, M. J. Electroanal. Chem. 2008, 621, 31.  doi: 10.1016/j.jelechem.2008.04.007

    24. [24]

      Marcano, D. C.; Kosynkin, D. V.; Berlin, J. M.; Sinitskii, A.; Sun, Z.; Slesarev, A.; Alemany, L. B.; Lu, W.; Tour, J. M. ACS Nano 2010, 4, 4806.  doi: 10.1021/nn1006368

  • 加载中
    1. [1]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    2. [2]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    3. [3]

      Jingyu Cai Xiaoyu Miao Yulai Zhao Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028

    4. [4]

      Tongtong Zhao Yan Wang Shiyue Qin Liang Xu Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003

    5. [5]

      Xi Xu Chaokai Zhu Leiqing Cao Zhuozhao Wu Cao Guan . Experiential Education and 3D-Printed Alloys: Innovative Exploration and Student Development. University Chemistry, 2024, 39(2): 347-357. doi: 10.3866/PKU.DXHX202308039

    6. [6]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    7. [7]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    8. [8]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    9. [9]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    10. [10]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    11. [11]

      Yiqian JiangZihan YangXiuru BiNan YaoPeiqing ZhaoXu Meng . Mediated electron transfer process in α-MnO2 catalyzed Fenton-like reaction for oxytetracycline degradation. Chinese Chemical Letters, 2024, 35(8): 109331-. doi: 10.1016/j.cclet.2023.109331

    12. [12]

      Yang Xia Kangyan Zhang Heng Yang Lijuan Shi Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-. doi: 10.3866/PKU.WHXB202407012

    13. [13]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    14. [14]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    15. [15]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    16. [16]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    17. [17]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    18. [18]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    19. [19]

      Xin LiWanting FuRuiqing GuanYue YuanQinmei ZhongGang YaoSheng-Tao YangLiandong JingSong Bai . Nucleophiles promotes the decomposition of electrophilic functional groups of tetracycline in ZVI/H2O2 system: Efficiency and mechanism. Chinese Chemical Letters, 2024, 35(10): 109625-. doi: 10.1016/j.cclet.2024.109625

    20. [20]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

Metrics
  • PDF Downloads(7)
  • Abstract views(1682)
  • HTML views(411)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return