Citation: Qian Guangsheng, Zhao Wei, Xu Jingjuan, Chen Hongyuan. Highly Sensitive Detection of Mercury Ion Based on Plasmon Coupling[J]. Acta Chimica Sinica, ;2017, 75(11): 1097-1102. doi: 10.6023/A17060290 shu

Highly Sensitive Detection of Mercury Ion Based on Plasmon Coupling

  • Corresponding author: Zhao Wei, weizhao@nju.edu.cn Xu Jingjuan, xujj@nju.edu.cn
  • Received Date: 30 June 2017
    Available Online: 7 November 2017

    Fund Project: the National Natural Science Foundation of China 21535003the National Natural Science Foundation of China 21327902Project supported by the National Natural Science Foundation of China (Nos. 21327902, 21535003)

Figures(7)

  • Mercury is very harmful to the environment and human health even at low concentration. Methods for sensitive detection of mercury ion (Hg2+) have increasingly been developed over the past decade owing to the rapid development in nanotechnology. However, the limits of detection (LODs) of these methods are mostly not satisfactory enough to meet the demand of monitoring trace amounts of mercury ion. DNA thymine (T bases) can react with the mercury ion to form T-Hg2+-T structure, and this interaction has been proved to be much more stable than the interaction between thymine and its complementary adenine (A bases). Based on this principle, a series of ultra-sensitive DNA-based colorimetric biosensors, mostly using Au nanoparticles (AuNPs) as DNA carriers, have been designed for detection of mercury ion. In this study, we report a new strategy for highly sensitive Hg2+ detection based on Hg2+-induced AuNPs assembly. AuNPs of different sizes (s-AuNPs of 18 nm and c-AuNPs of 52 nm) were modified with oligonucleotides containing a sequence of continuous T bases. In the presence of Hg2+, s-AuNPs would be bound to c-AuNPs in the solution owing to oligonucleotide hybridization, forming a core-satellites nanostrucure. This process was accompanied by a color change of the scattering light from green to orange as observed under dark-field microscopy and a corresponding distinct scattering peak shift. The scattering spectra of the AuNPs were obtained using a spectroscopic system which was established autonomously. The scattering peak shift of color-changed spots corresponded with Hg2+ concentration. It was increased linearly with logarithm of Hg2+ concentration over a wide range from 1 pmol/L to 1 nmol/L, with the correlation coefficient of 0.983 (R2=0.983), and the detection limit of Hg2+ was estimated to be 1 pmol/L. Other metal ions, such as Ag+, K+, Ca2+, Mg2+, Zn2+, Cd2+, Fe2+, Pb2+, Ni2+, Mn2+, Al3+, induced negligible scattering peak shifts for AuNPs under the same conditions, which showed that this strategy exhibited excellent selectivity towards Hg2+. Moreover, satisfactory results were obtained when the proposed approach was applied to detect Hg2+ in real samples with recoveries of 98.7%~103.1% and 105.6%~108.2% for river water and tap water, respectively.
  • 加载中
    1. [1]

      Li, Y.; Jing, C.; Zhang, L.; Long, Y. T. Chem. Soc. Rev. 2012, 41, 632.  doi: 10.1039/C1CS15143F

    2. [2]

      Anker, J. N.; Hall, W. P.; Lyandres, O.; Shah, N. C.; Zhao, J.; Van Duyne, R. P. Nature Mater. 2008, 7, 442.  doi: 10.1038/nmat2162

    3. [3]

      Zhang, L.; Sheng, J. J.; Fan, Q. L.; Wang, L. H.; Huang, W. Chin. Sci. Bull. 2014, 59, 169(in Chinese).
       

    4. [4]

      Wang, Y. J.; Zu, X. H.; Yi, G. B.; Luo, H. S.; Huang, H. L.; Song, X. L. Chin. J. Chem. 2016, 34, 1321.  doi: 10.1002/cjoc.v34.12

    5. [5]

      Li, Y.; Lin, Z.; Li, R. Z.; Liu, X. Acta Chim. Sinica 2012, 70, 1304(in Chinese).
       

    6. [6]

      Kelly, K. L.; Coronado, E.; Zhao, L. L.; Schatz, G. C. J. Phys. Chem. B 2003, 107, 668.

    7. [7]

      Hartland, G. V. Chem. Rev. 2011, 111, 3858.  doi: 10.1021/cr1002547

    8. [8]

      Sonnichsen, C.; Reinhard, B. M.; Liphardt, J.; Alivistos A. P. Nat. Biotechnol. 2005, 23, 741.  doi: 10.1038/nbt1100

    9. [9]

      Sheikholeslami, S.; Jun, Y.; Jain, P. K.; Alivistos, A. P. Nano Lett. 2010, 10, 2655.  doi: 10.1021/nl101380f

    10. [10]

      Jun, Y.-W.; Sheikholeslami, S.; Hostetter, D. R.; Tajon, C.; Craik, C. S.; Alivistos A. P. Proc. Natl. Acad. Sci. U. S. A. 2009, 106, 17735.  doi: 10.1073/pnas.0907367106

    11. [11]

      Reinhard, B. M.; Sheikholeslami, S.; Mastroianni, A.; Alivistos, A. P.; Liphardt, J. Proc. Natl. Acad. Sci. U. S. A. 2007, 104, 2667.  doi: 10.1073/pnas.0607826104

    12. [12]

      Zhen, S. J.; Wan, X. Y.; Zheng, L. L.; Li, C. M.; Huang, C. Z. Sci. Bull. 2016, 61, 639.  doi: 10.1007/s11434-016-1049-3

    13. [13]

      Li, X.-L.; Zhang, Z.-L.; Zhao, W.; Xia, X.-H; Xu, J.-J.; Chen, H.-Y. Chem. Sci. 2016, 7, 3256.  doi: 10.1039/C5SC04369G

    14. [14]

      Lermusiaux, L.; Maillard, V.; Bidault, S. ACS Nano 2015, 9, 978.  doi: 10.1021/nn506947g

    15. [15]

      Yoon, J. H.; Lim, J.; Yoon, S. ACS Nano 2012, 6, 7199.  doi: 10.1021/nn302264f

    16. [16]

      Qian, G. S.; Kang, B.; Zhang, Z. L.; Li, X. L.; Zhao, W.; Xu, J. J.; Chen, H. Y. Chem. Commun. 2016, 52, 11052.  doi: 10.1039/C6CC02831D

    17. [17]

      Clarkson, T. W.; Magos, L.; Myers, G. J. N. Engl. J. Med. 2003, 349, 1731.  doi: 10.1056/NEJMra022471

    18. [18]

      Ma, X.; Song, F.; Wang, L.; Cheng, Y.; Zhu, C. J. Polym. Sci. Polym. Chem. 2012, 50, 517.  doi: 10.1002/pola.v50.3

    19. [19]

      Nolan, E. M.; Lippard, S. J. Chem. Rev. 2008, 108, 3443.  doi: 10.1021/cr068000q

    20. [20]

      Yang, Y. M.; Zhao, Q.; Feng, W.; Li, F. Y. Chem. Rev. 2013, 113, 192.  doi: 10.1021/cr2004103

    21. [21]

      Zhao, Q.; Li, F. M.; Huang, C. H. Chem. Soc. Rev. 2010, 39, 3007.  doi: 10.1039/b915340c

    22. [22]

      Quang, D. T.; Kim, J. S.; Yong, J. Chem. Soc. Rev. 2010, 110, 6280.  doi: 10.1021/cr100154p

    23. [23]

      Kim, H. N.; Ren, W. X.; Kim, J. S.; Yong, J. Chem. Soc. Rev. 2012, 41, 3210.  doi: 10.1039/C1CS15245A

    24. [24]

      Zhang, Y.; Li, W.; Wang, Q.; Zhang, R. X.; Xiong, Q. J.; Shen, X.; Guo, J.; Chen, X. M. Acta Chim. Sinica 2013, 71, 1496(in Chinese).
       

    25. [25]

      Zhang, C. Y.; Meng, Y. Z.; Kuang, J. Z.; Xu, L. Acta Chim. Sinica 2015, 73, 409(in Chinese).
       

    26. [26]

      Wang, Q.; Yang, X. H.; Yang, X. H.; Liu, P.; Wang, K. M.; Huang, J.; Liu, J. B.; Song, C. X.; Wang, J. J. Spectrochim. Acta, Part A 2015, 136, 283.  doi: 10.1016/j.saa.2014.08.129

    27. [27]

      Liu, C. W.; Hsieh, Y. T.; Huang, C. C.; Lin, Z. H.; Chang, H. T. Chem. Commun. 2008, 19, 2242.

    28. [28]

      Li, L.; Li, B. X.; Qi, Y. Y.; Jin, Y. Anal. Bioanal. Chem. 2009, 393, 2051.  doi: 10.1007/s00216-009-2640-0

    29. [29]

      Guan, H. N.; Liu, X. F.; Wang, W.; Liang, J. Z. Spectrochim. Acta Part A 2014, 121, 527.  doi: 10.1016/j.saa.2013.10.107

    30. [30]

      Hung, Y. L.; Hsiung, T. M.; Chen, Y. Y.; Huang, Y. F.; Huang, C. C. J. Phys. Chem. C 2010, 114, 16329.

    31. [31]

      Si, S.; Kotal, A.; Mandal, T. K. J. Phys. Chem. C 2007, 111, 1248.  doi: 10.1021/jp066303i

    32. [32]

      Ni, W. H.; Chen, H. J.; Su, J.; Sun, Z. H.; Wang, J. F.; Wu, H. K. J. Am. Chem. Soc. 2010, 132, 4806.  doi: 10.1021/ja910239b

    33. [33]

      Liu, D. B.; Qu, W. S.; Chen, W. W.; Zhang, W.; Wang, Z.; Jiang, X. Y. Anal. Chem. 2010, 82, 9606.  doi: 10.1021/ac1021503

    34. [34]

      Zhang, T. T.; Li, H.; Hou, S. W.; Dong, Y. Q.; Pang, G. S.; Zhang, Y. W. ACS Appl. Mater. Interfaces 2015, 7, 27131.  doi: 10.1021/acsami.5b07152

    35. [35]

      Li, K.; Wang, K.; Qin, W. W.; Deng, S. H.; Li, D.; Shi, J. Y.; Huang, Q.; Fan, C. H. J. Am. Chem. Soc. 2015, 137, 4292.  doi: 10.1021/jacs.5b00324

  • 加载中
    1. [1]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    2. [2]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    3. [3]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    4. [4]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    5. [5]

      Jianbao Mei Bei Li Shu Zhang Dongdong Xiao Pu Hu Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023

    6. [6]

      Bohan ChenLiming GongJing FengMingji JinLiqing ChenZhonggao GaoWei Huang . Research advances of nanoparticles for CAR-T therapy in solid tumors. Chinese Chemical Letters, 2024, 35(9): 109432-. doi: 10.1016/j.cclet.2023.109432

    7. [7]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    8. [8]

      Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020

    9. [9]

      Yingran Liang Fei WangJiabao Sun Hongtao Zheng Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024

    10. [10]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    11. [11]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    12. [12]

      Rui Li Huan Liu Yinan Jiao Shengjian Qin Jie Meng Jiayu Song Rongrong Yan Hang Su Hengbin Chen Zixuan Shang Jinjin Zhao . 卤化物钙钛矿的单双向离子迁移. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-. doi: 10.3866/PKU.WHXB202311011

    13. [13]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    14. [14]

      Feiya Cao Qixin Wang Pu Li Zhirong Xing Ziyu Song Heng Zhang Zhibin Zhou Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094

    15. [15]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    16. [16]

      Dongqi Cai Fuping Tian Zerui Zhao Yanjuan Zhang Yue Dai Feifei Huang Yu Wang . Exploration of Factors Influencing the Determination of Ion Migration Number by Hittorf Method. University Chemistry, 2024, 39(4): 94-99. doi: 10.3866/PKU.DXHX202310031

    17. [17]

      Jiayu Tang Jichuan Pang Shaohua Xiao Xinhua Xu Meifen Wu . Improvement for Measuring Transference Numbers of Ions by Moving-Boundary Method. University Chemistry, 2024, 39(5): 193-200. doi: 10.3866/PKU.DXHX202311021

    18. [18]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    19. [19]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    20. [20]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

Metrics
  • PDF Downloads(3)
  • Abstract views(2718)
  • HTML views(209)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return