Citation: Lin Xiaoyu, Wang Jing. Research Progress on Preparation and Application of Two-Dimensional Transition Metal Dichalcogenides Nanomaterials[J]. Acta Chimica Sinica, ;2017, 75(10): 979-990. doi: 10.6023/A17060282 shu

Research Progress on Preparation and Application of Two-Dimensional Transition Metal Dichalcogenides Nanomaterials

  • Corresponding author: Wang Jing, jingwang@nudt.edu.cn
  • Received Date: 27 June 2017
    Available Online: 26 October 2017

    Fund Project: the China Specialized Research Fund for the Doctoral Program of Higher Education 20134307120015Project supported by the National Natural Science Foundation of China (No. 21403298), the China Specialized Research Fund for the Doctoral Program of Higher Education (No. 20134307120015)the National Natural Science Foundation of China 21403298

Figures(9)

  • Two-dimensional (2D) materials have received great attentions in recent years, including BN, transition metal dichalcogenides, transition metal oxides and black phosphorus. Among them, graphene-like transition metal dichalcogenides (TMDCs), such as MoS2, WS2, MoSe2, TiS2, are emerging as key materials in electronics and chemical industry because of their excellent physical and chemical properties. Because of the quantum confinement and surface effects, the 2D nanomaterials exhibit completely different properties from their bulk, leading to a new field in material science and technology. The ability to prepare high quality and large scale TMDCs is the foundation for their practical applications. Until now, many methods have been employed to prepare various morphologies of TMDCs, including mechanical cleavage, intercalation-exfoliation, ultrasonic-assisted liquid-phase exfoliation, chemical vapor deposition and hydrothermal synthesis. In this paper, the authors introduce the crystal structures and electronic properties of TMDCs briefly. The dimension from bulk to single or few layers leads to changes of these nanomaterials, showing novel properties in electronic transfer rate, catalytic activity, etc. Then the top-down and bottom-up preparation methods are summarized, and the advantages and disadvantages of these methods are discussed. At present, the challenge is that there are no proper ways to prepare TMDCs in large scale with controlled thickness and general application. As every single material has its performance limitation, the hotpot in preparation lies in the hybridization with other materials to create functional composites, aiming to improve their electronic and optical properties for special devices, and the most commonly used components are graphene and other 2D materials. And the authors also introduce the research progress in applications systematically, with emphasis on electronic devices, optoelectronic devices, sensing platforms, energy storage devices and catalyst, showing a wide range of applications. In addition, the authors also give some perspectives on the challenges and prospects in this field.
  • 加载中
    1. [1]

      Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Science 2004, 306, 666.  doi: 10.1126/science.1102896

    2. [2]

      Nag, A.; Raidongia, K.; Hembram, K. P. S. S.; Datta, R.; Waghmare, U. V.; Rao, C. N. R. ACS Nano 2010, 4, 1539.  doi: 10.1021/nn9018762

    3. [3]

      Behzad, S. Solid State Commun. 2016, 248, 27.  doi: 10.1016/j.ssc.2016.09.007

    4. [4]

      Wang, Z. G.; Su, Q. L.; Yin, G. Q.; Shi, J. J.; Deng, H. Q.; Guan, J.; Wu, M. P.; Zhou, Y. L.; Lou, H. L.; Fu, Y. Q. Mater. Chem. Phys. 2014, 147, 1068.  doi: 10.1016/j.matchemphys.2014.06.060

    5. [5]

      Tan, C. L.; Zhang, H. Chem. Soc. Rev. 2015, 44, 2713.  doi: 10.1039/C4CS00182F

    6. [6]

      Cui, X. H.; Chen, H. Y.; Yang, T. Acta Chim. Sinica 2016, 74, 392.
       

    7. [7]

      Poizot, P.; Laruelle, S.; Grugeon, S.; Dupont, L.; Tarascon, J.-M. Nature 2000, 407, 496.  doi: 10.1038/35035045

    8. [8]

      Naguib, M.; Mashtalir, O.; Carle, V.; Presser, V.; Hultman, L.; Gogotsi, Y.; Barsoum, M. W. ACS Nano 2012, 6, 1322.  doi: 10.1021/nn204153h

    9. [9]

      Anasori, B.; Lukatskaya, M. R.; Gogotsi, Y. Nat. Rev. Mater. 2017, 2, 16098.  doi: 10.1038/natrevmats.2016.98

    10. [10]

      Li, L. K.; Yu, Y. J.; Ye, G. J.; Ge, Q. Q.; Ou, X. D.; Wu, H.; Feng, D. L.; Chen, X. H.; Zhang, Y. D. Nat. Nanotechnol. 2014, 9, 372.  doi: 10.1038/nnano.2014.35

    11. [11]

      Liu, H.; Du, Y. C.; Deng, Y. X.; Ye, P. D. Chem. Soc. Rev. 2015, 44, 2732.  doi: 10.1039/C4CS00257A

    12. [12]

      Song, J.; Wang, J.; Lin, X. Y.; He, J. F.; Liu, H. L.; Lei, Y. P.; Chu, Z. Y. ChemElectroChem 2017, 4, 2373.  doi: 10.1002/celc.v4.9

    13. [13]

      Marseglia, E. A. Int. Rev. Phys. Chem. 1983, 3, 177.  doi: 10.1080/01442358309353343

    14. [14]

      Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Nat. Nanotechnol. 2011, 6, 147.  doi: 10.1038/nnano.2010.279

    15. [15]

      Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Nat. Nanotechnol. 2012, 7, 699.  doi: 10.1038/nnano.2012.193

    16. [16]

      Chhowalla, M.; Shin, H. S.; Eda, G.; Li, L. J.; Loh, K. P.; Zhang, H. Nat. Chem. 2013, 5, 263.  doi: 10.1038/nchem.1589

    17. [17]

      Klein, A.; Tiefenbacher, S.; Eyert, V.; Pettenkofer, C.; Jaegermann, W. Phys. Rev. B 2001, 64, 205416.  doi: 10.1103/PhysRevB.64.205416

    18. [18]

      Tongay, S.; Zhou, J.; Ataca, C.; Lo, K.; Matthews, T. S.; Li, J.; Grossman, J. C.; Wu, J. Nano Lett. 2012, 12, 5576.  doi: 10.1021/nl302584w

    19. [19]

      Lee, C.; Yan, H. G.; Brus, L. E.; Heinz, T. F.; Hone, J.; Ryu, S. ACS Nano 2010, 4, 2695.  doi: 10.1021/nn1003937

    20. [20]

      Novoselov, K. S.; Jiang, D.; Schedin, F.; Booth, T. J.; Khotkevich, V. V.; Morozov, S. V.; Geim, A. K. J. Am. Chem. Soc. 2005, 102, 10451.
       

    21. [21]

      Li, H.; Yin, Z. Y.; He, Q.; Li, H.; Huang, X.; Lu, G.; Fam, D. W. H.; Tok, A. I. Y.; Zhang, Q.; Zhang, H. Small 2012, 8, 63.  doi: 10.1002/smll.201101016

    22. [22]

      Hernandez, Y.; Nicolosi, V.; Lotya, M.; Blighe, F. M.; Sun, Z. Y.; De, S.; McGovern, I. T.; Holland, B.; Byrne, M.; Gun'Ko, Y. K.; Boland, J. J.; Niraj, P.; Duesberg, G.; Krishnamurthy, S.; Goodhue, R.; Hutchison, J.; Scardaci, V.; Ferrari, A. C.; Coleman, J. N. Nat. Nanotechnol. 2008, 3, 563.  doi: 10.1038/nnano.2008.215

    23. [23]

      Coleman, J. N.; Lotya, M.; O'Neill, A.; Bergin, S. D.; King, P. J.; Khan, U.; Young, K.; Gaucher, A.; De, S.; Smith, R. J.; Shvets, I. V.; Arora, S. K.; Stanton, G.; Kim, H. Y.; Lee, K.; Kim, G. T.; Duesberg, G. S.; Hallam, T.; Boland, J. J.; Wang, J. J.; Donegan, J. F.; Grunlan, J. C.; Moriarty, G.; Shmeliov, A.; Nicholls, R. J.; Perkins, J. M.; Grieveson, E. M.; Theuwissen, K.; McComb, D. W.; Nellist, P. D.; Nicolosi, V. Science 2011, 331, 568.  doi: 10.1126/science.1194975

    24. [24]

      Nicolosi, V.; Chhowalla, M.; Kanatzidis, M. G.; Strano, M. S.; Coleman, J. N. Science 2013, 340, 1226419.  doi: 10.1126/science.1226419

    25. [25]

      Wang, K. P.; Wang, J.; Fan, J. T.; Lotya, M.; O'Neill, A.; Fox, D.; Feng, Y. Y.; Zhang, X. Y.; Jiang, B. X.; Zhao, Q. Z.; Zhang, H. Z.; Coleman, J. N.; Zhang, L.; Blau, W. J. ACS Nano 2013, 7, 9260.  doi: 10.1021/nn403886t

    26. [26]

      Smith, R. J.; King, P. J.; Lotya, M.; Wirtz, C.; Khan, U.; De, S.; O'Neill, A.; Duesberg, G. S.; Grunlan, J. C.; Moriarty, G.; Chen, J.; Wang, J.; Minett, A. I.; Nicolosi, V.; Coleman, J. N. Adv. Mater. 2011, 23, 3944.  doi: 10.1002/adma.v23.34

    27. [27]

      Joensen, P. F. R. F.; Morrison, S. R. Mater. Res. Bull. 1986, 21, 457.  doi: 10.1016/0025-5408(86)90011-5

    28. [28]

      Matte, H. S. S. R.; Gomathi, A.; Manna, A. K.; Late, D. J.; Datta, R.; Pati, S. K.; Rao, C. N. R. Angew. Chem. 2010, 122, 4153.  doi: 10.1002/ange.201000009

    29. [29]

      Eda, G.; Yamaguchi, H.; Voiry, D.; Fujita, T.; Chen, M.; Chhowalla, M. Nano Lett. 2011, 11, 5111.  doi: 10.1021/nl201874w

    30. [30]

      Zeng, Z. Y.; Yin, Z. Y.; Huang, X.; Li, H.; He, Q. Y.; Lu, G.; Boey, F.; Zhang, H. Angew. Chem., Int. Ed. 2011, 50, 11093.  doi: 10.1002/anie.v50.47

    31. [31]

      Zeng, Z. Y.; Sun, T.; Zhu, J. X.; Huang, X.; Yin, Z. Y.; Lu, G.; Fan, Z. X.; Yan, Q. Y.; Hng, H. H.; Zhang, H. Angew. Chem. 2012, 51, 9052.  doi: 10.1002/anie.201204208

    32. [32]

      Peng, Y. Y.; Meng, Z. Y.; Zhong, C.; Lu, J.; Yu, W. C.; Jia, Y. B.; Qian, Y. T. Chem. Lett. 2001, 8, 772.
       

    33. [33]

      Peng, Y. Y.; Meng, Z. Y.; Zhong, C.; Lu, J.; Yu, W. C.; Yang, Z. P.; Qian, Y. T. J. Solid State Chem. 2001, 159, 170.  doi: 10.1006/jssc.2001.9146

    34. [34]

      He, H. Y. Res. Chem. Intermed. 2010, 36, 155.  doi: 10.1007/s11164-010-0125-6

    35. [35]

      Zhang, X. H.; Yang, X. H.; Yang, F.; Xue, M. Q.; Luo, G. S. Micro Nano Lett. 2015, 10, 339.  doi: 10.1049/mnl.2015.0014

    36. [36]

      Chakravarty, D.; Late, D. J. RSC Adv. 2015, 5, 21700.  doi: 10.1039/C4RA12599A

    37. [37]

      Wu, J. F.; Fu, X. Mater. Lett. 2007, 61, 4332.  doi: 10.1016/j.matlet.2007.01.099

    38. [38]

      Cao, S. X.; Liu, T. M.; Zeng, W.; Hussain, S.; Peng, X. H.; Pan, F. S. J. Mater. Sci.:Mater. Electron. 2014, 25, 4300.  doi: 10.1007/s10854-014-2164-z

    39. [39]

      Cao, S. X.; Liu, T. M.; Hussain, S.; Zeng, W.; Peng, X. H.; Pan, F. S. Mater. Lett. 2014, 129, 205.  doi: 10.1016/j.matlet.2014.05.013

    40. [40]

      Huang, G. C.; Chen, T.; Chen, W. X.; Wang, Z.; Chang, K.; Ma, L.; Huang, F. H.; Chen, D. Y.; Lee, J. Y. Small 2013, 9, 3693.  doi: 10.1002/smll.201300415

    41. [41]

      Shelke, N. T.; Karche, B. R. J. Alloys Compd. 2015, 653, 298.  doi: 10.1016/j.jallcom.2015.08.255

    42. [42]

      Li, H. Y.; Chen, S. M.; Jia, X. F.; Xu, B.; Lin, H. F.; Yang, H. Z.; Song, L.; Wang, X. Nat. Commun. 2017, 8, 15377.  doi: 10.1038/ncomms15377

    43. [43]

      Lee, Y. H.; Zhang, X. Q.; Zhang, W. J.; Chang, M. T.; Lin, C. T.; Chang, K. D.; Yu, Y. C.; Wang, J. T. W.; Chang, C. S.; Li, L. J.; Lin, T. W. Adv. Mater. 2012, 24, 2320.  doi: 10.1002/adma.201104798

    44. [44]

      Elías, A. L.; Perea-López, N.; Castro-Beltrán, A.; Berkdemir, A.; Lv, R. T.; Feng, S. M.; Long, A. D.; Hayashi, T.; Kim, Y. A.; Endo, M.; Gutiérrez, H. R.; Pradhan, N. R.; Balicas, L.; Mallouk, T. E.; López-Urías, F.; Terrones, H.; Terrones, M. ACS Nano 2013, 7, 5235.  doi: 10.1021/nn400971k

    45. [45]

      Lin, Y. C.; Zhang, W. J.; Huang, J. K.; Liu, K. K.; Lee, Y. H.; Liang, C. T.; Chu, C. W.; Li, L. J. Nanoscale 2012, 4, 6637.  doi: 10.1039/c2nr31833d

    46. [46]

      Zhan, Y. J.; Liu, Z.; Najmaei, S.; Ajayan, P. M.; Lou, J. Small 2012, 8, 966.  doi: 10.1002/smll.201102654

    47. [47]

      Laskar, M. R.; Ma, L.; Kannappan, S.; Park, P. S.; Krishnamoorthy, S.; Nath, D. N.; Lu, W.; Wu, Y. Y.; Rajan, S. Appl. Phys. Lett. 2013, 102, 252108.  doi: 10.1063/1.4811410

    48. [48]

      Najmaei, S.; Liu, Z.; Zhou, W.; Zou, X. L.; Shi, G.; Lei, S. D.; Yakobson, B. I.; Idrobo, J. C.; Ajayan, P. M.; Lou, J. Nat. Mater. 2013, 12, 754.  doi: 10.1038/nmat3673

    49. [49]

      Lee, Y. H.; Yu, L.; Wang, H.; Fang, W.; Ling, X.; Shi, Y.; Lin, C. T.; Huang, J. K.; Chang, M. T.; Chang, C. S.; Dresselhaus, M.; Palacios, T.; Li, L. J.; Kong, J. Nano Lett. 2013, 13, 1852.  doi: 10.1021/nl400687n

    50. [50]

      Shi, J. P.; Ma, D. L.; Zhang, Y. F.; Liu, Z. F. Acta Chim. Sinica 2015, 73, 877.  doi: 10.3866/PKU.WHXB201503161
       

    51. [51]

      Wang, B. B.; Zheng, K.; Zhong, X. X.; Gao, D.; Gao, B. J. Alloys Compd. 2017, 695, 27.  doi: 10.1016/j.jallcom.2016.10.154

    52. [52]

      Xu, G. C.; Lu, Z. X.; Zhang, Q.; Qiu, H. L.; Jiao, L. Y. Acta Chim. Sinica 2015, 73, 895.
       

    53. [53]

      Mahler, B.; Hoepfner, V.; Liao, K.; Ozin, G. J. Am. Chem. Soc. 2014, 136, 14121.  doi: 10.1021/ja506261t

    54. [54]

      Jung, W.; Lee, S.; Yoo, D.; Jeong, S.; Miro, P.; Kuc, A.; Heine, T.; Cheon, J. J. Am. Chem. Soc. 2015, 137, 7266.  doi: 10.1021/jacs.5b02772

    55. [55]

      Guo, W. B.; Chen, Y. Z.; Wang, L. S.; Xu, J.; Zeng, D. Q.; Peng, D. L. Electrochim. Acta 2017, 231, 69.  doi: 10.1016/j.electacta.2017.02.048

    56. [56]

      Huang, X.; Yin, Z. Y.; Wu, S. X.; Qi, X. Y.; He, Q. Y.; Zhang, Q. C.; Yan, Q. Y.; Boey, F.; Zhang, H. Small 2011, 7, 1876.  doi: 10.1002/smll.201002009

    57. [57]

      Han, M. Y.; Ozyilmaz, B.; Zhang, Y.; Kim, P. Phys. Rev. Lett. 2007, 98, 206805.  doi: 10.1103/PhysRevLett.98.206805

    58. [58]

      Zhang, Y.; Tang, T. T.; Girit, C.; Hao, Z.; Martin, M. C.; Zettl, A.; Crommie, M. F.; Shen, Y. R.; Wang, F. Nature 2009, 459, 820.  doi: 10.1038/nature08105

    59. [59]

      Chen, F.; Xia, J. L.; Ferry, D. K.; Tao, N. J. Nano Lett. 2009, 9, 2571.  doi: 10.1021/nl900725u

    60. [60]

      Konar, A.; Fang, T.; Jena, D. Phys. Rev. B 2010, 82, 115452.  doi: 10.1103/PhysRevB.82.115452

    61. [61]

      Li, X. L.; Wang, X. R.; Zhang, L.; Lee, S.; Dai, H. J. Science 2008, 319, 1229.  doi: 10.1126/science.1150878

    62. [62]

      Gomez, L.; Aberg, I.; Hoyt, J. L. IEEE Electron Dev. Lett. 2007, 28, 285.  doi: 10.1109/LED.2007.891795

    63. [63]

      Kim, S. Y.; Park, S.; Choi, W. Appl. Phys. Lett. 2016, 109, 152101.  doi: 10.1063/1.4964606

    64. [64]

      Guo, J.; Jiang, J.; Zheng, Z.; Yang, B. Org. Electron. 2017, 40, 75.  doi: 10.1016/j.orgel.2016.10.043

    65. [65]

      Yoon, Y.; Ganapathi, K.; Salahuddin, S. Nano Lett. 2011, 11, 3768.  doi: 10.1021/nl2018178

    66. [66]

      Ovchinnikov, D.; Allain, A.; Huang, Y. S.; Dumcenco, D.; Kis, A. ACS Nano 2014, 8, 8174.  doi: 10.1021/nn502362b

    67. [67]

      Kwak, J. Y.; Hwang, J.; Calderon, B.; Alsalman, H.; Munoz, N.; Schutter, B.; Spencer, M. G. Nano Lett. 2014, 14, 4511.  doi: 10.1021/nl5015316

    68. [68]

      Srivastava, A.; Fahad, M. S. Solid-State Electron. 2016, 126, 96.  doi: 10.1016/j.sse.2016.09.008

    69. [69]

      Radisavljevic, B.; Whitwick, M. B.; Kis, A. ACS Nano 2011, 5, 9934.  doi: 10.1021/nn203715c

    70. [70]

      Zou, X.; Huang, C. W.; Wang, L.; Yin, L. J.; Li, W.; Wang, J.; Wu, B.; Liu, Y.; Yao, Q.; Jiang, C.; Wu, W. W.; He, L.; Chen, S.; Ho, J. C.; Liao, L. Adv. Mater. 2016, 28, 2062.  doi: 10.1002/adma.201505205

    71. [71]

      Lee, H. S.; Min, S. W.; Chang, Y. G.; Park, M. K.; Nam, T.; Kim, H.; Kim, J. H.; Ryu, S.; Im, S. Nano Lett. 2012, 12, 3695.  doi: 10.1021/nl301485q

    72. [72]

      Wang, X. D.; Wang, P.; Wang, J. L.; Hu, W. D.; Zhou, X. H.; Guo, N.; Huang, H.; Sun, S.; Shen, H.; Lin, T.; Tang, M. H.; Liao, L.; Jiang, A. Q.; Sun, J. L.; Meng, X. J.; Chen, X. S.; Lu, W.; Chu, J. H. Adv. Mater. 2015, 27, 6575.  doi: 10.1002/adma.201503340

    73. [73]

      Xie, Y.; Zhang, B.; Wang, S. X.; Wang, D.; Wang, A. Z.; Wang, Z. Y.; Yu, H. H.; Zhang, H. J.; Chen, Y. X.; Zhao, M. W.; Huang, B. B.; Mei, L. M.; Wang, J. Y. Adv. Mater. 2017, 29, 1605972.  doi: 10.1002/adma.v29.17

    74. [74]

      Chang, Y. H.; Zhang, W. J.; Zhu, Y. H.; Han, Y.; Pu, J.; Chang, J. K.; Hsu, W. T.; Huang, J. K.; Hsu, C. L.; Chi, M. H.; Takenobu, T.; Li, H. N.; Wu, C. I.; Chang, W. H.; Wee, A. T. S.; Li, L. J. ACS Nano 2014, 8, 8582.  doi: 10.1021/nn503287m

    75. [75]

      Bernardi, M.; Palummo, M.; Grossman, J. C. Nano Lett. 2013, 13, 3664.  doi: 10.1021/nl401544y

    76. [76]

      Ma, C. Y.; Fu, W. F.; Huang, G. W.; Chen, H. Z.; Xu, M. S. Acta Chim. Sinica 2015, 73, 949.
       

    77. [77]

      Tsai, M. L.; Su, S. H.; Chang, J. K.; Tsai, D. S.; Chen, C. H.; Wu, C. I.; Li, L. J.; Chen, L. J.; He, J. H. ACS Nano 2014, 8, 8317.  doi: 10.1021/nn502776h

    78. [78]

      Deng, Q. R.; Li, Y. Q.; Shen, Y. L.; Chen, L.; Wang, G. M.; Wang, S. G. Mod. Phys. Lett. B 2017, 31, 1750079.
       

    79. [79]

      Reynolds, K. J.; Barker, J. A.; Greenham, N. C.; Friend, R. H.; Frey, G. L. J. Appl. Phys. 2002, 92, 7556.  doi: 10.1063/1.1522812

    80. [80]

      Liu, J.; Zeng, Z.; Cao, X.; Lu, G.; Wang, L. H.; Fan, Q. L.; Huang, W.; Zhang, H. Small 2012, 8, 3517.  doi: 10.1002/smll.v8.22

    81. [81]

      Afzal, A.; Cioffi, N.; Sabbatini, L.; Torsi, L. Sens. Actuators B 2012, 171-172, 25.
       

    82. [82]

      Late, D. J.; Doneux, T.; Bougouma, M. Appl. Phys. Lett. 2014, 105, 233103.  doi: 10.1063/1.4903358

    83. [83]

      Li, X. G.; Li, X. X.; Li, Z.; Wang, J.; Zhang, J. W. Sens. Actuators B 2017, 240, 273.  doi: 10.1016/j.snb.2016.08.163

    84. [84]

      Donarelli, M.; Prezioso, S.; Perrozzi, F.; Bisti, F.; Nardone, M.; Giancaterini, L.; Cantalini, C.; Ottaviano, L. Sens. Actuators B 2015, 207, 602.  doi: 10.1016/j.snb.2014.10.099

    85. [85]

      Luo, Y. H.; Chen, C. Y.; Xia, K.; Peng, S. H.; Guan, H. Y.; Tang, J. Y.; Lu, H. U.; Yu, J. H.; Zhang, J.; Xiao, Y.; Chen, Z. Opt. Express 2016, 24, 8956.  doi: 10.1364/OE.24.008956

    86. [86]

      He, S. J.; Song, B.; Li, D.; Zhu, C. F.; Qi, W. P.; Wen, Y. Q.; Wang, L. H.; Song, S. P.; Fang, H. P.; Fan, C. H. Adv. Func. Mater. 2010, 20, 453.  doi: 10.1002/adfm.v20:3

    87. [87]

      Baby, T. T.; Aravind, S. S. J.; Arockiadoss, T.; Rakhi, R. B.; Ramaprabhu, S. Sens. Actuators B 2010, 145, 71.  doi: 10.1016/j.snb.2009.11.022

    88. [88]

      Liu, Y. X.; Dong, X. C.; Chen, P. Chem. Soc. Rev. 2012, 41, 2283.  doi: 10.1039/C1CS15270J

    89. [89]

      Zhu, C. F.; Zeng, Z. Y.; Li, H.; Li, F.; Fan, C. H.; Zhang, H. J. Am. Chem. Soc. 2013, 135, 5998.  doi: 10.1021/ja4019572

    90. [90]

      Jin, K.; Xie, L. M.; Tian, Y.; Liu, D. M. J. Phys. Chem. C 2016, 120, 11204.  doi: 10.1021/acs.jpcc.6b01193

    91. [91]

      Xiang, X.; Shi, J. B.; Huang, F. H.; Zheng, M. M.; Deng, Q. C.; Xu, J. Q. Biosens. Bioelectron. 2015, 74, 227.  doi: 10.1016/j.bios.2015.06.045

    92. [92]

      Xi, Q.; Zhou, D. M.; Kan, Y. Y.; Ge, J.; Wu, Z. K.; Yu, R. Q.; Jiang, J. H. Anal. Chem. 2014, 86, 1361.  doi: 10.1021/ac403944c

    93. [93]

      Wang, X. X.; Nan, F. X.; Zhao, J. L.; Yang, T.; Ge, T.; Jiao, K. Biosens. Bioelectron. 2015, 64, 386.  doi: 10.1016/j.bios.2014.09.030

    94. [94]

      Yang, Y. Y.; Zhang, H.; Huang, C. S.; Yang, D. P.; Jia, N. Q. Biosens. Bioelectron. 2017, 89, 461.  doi: 10.1016/j.bios.2016.04.019

    95. [95]

      Ning, M. Q.; Lu, M. M.; Li, J. B.; Chen, Z.; Dou, Y. K.; Wang, C. Z.; Rehman, F.; Cao, M. S.; Jin, H. B. Nanoscale 2015, 7, 15734.  doi: 10.1039/C5NR04670J

    96. [96]

      Liang, X. H.; Zhang, X. M.; Liu, W.; Tang, D. M.; Zhang, B. S.; Ji, G. B. J. Mater. Chem. C 2016, 4, 6816.  doi: 10.1039/C6TC02006B

    97. [97]

      Zhang, X. J.; Li, S.; Wang, S. W.; Yin, Z. J.; Zhu, J. Q.; Guo, A. P.; Wang, G. S.; Yin, P. G.; Guo, L. J. Phys. Chem. C 2016, 120, 22019.  doi: 10.1021/acs.jpcc.6b06661

    98. [98]

      Ding, X.; Huang, Y.; Li, S. P.; Zhang, N.; Wang, J. G. Composites Part A 2016, 90, 424.  doi: 10.1016/j.compositesa.2016.08.006

    99. [99]

      Zhang, X. J.; Wang, S. W.; Wang, G. S.; Li, Z.; Guo, A. P.; Zhu, J. Q.; Liu, D. P.; Yin, P. G. RSC Adv. 2017, 7, 22454.  doi: 10.1039/C7RA03260A

    100. [100]

      Palacin, M. R. Chem. Soc. Rev. 2009, 38, 2565.  doi: 10.1039/b820555h

    101. [101]

      Guo, G. H.; Hong, J. H.; Cong, C. J.; Zhou, X. W. J. Mater. Sci. 2005, 40, 2557.  doi: 10.1007/s10853-005-2073-x

    102. [102]

      Du, G. D.; Guo, Z. P.; Wang, S. Q.; Zeng, R.; Chen, Z. X.; Liu, H. K. Chem. Commun. 2010, 46, 1106.  doi: 10.1039/B920277C

    103. [103]

      Wang, P. P.; Sun, H.; Ji, Y.; Li, W.; Wang, X. Adv. Mater. 2014, 26, 964.  doi: 10.1002/adma.v26.6

    104. [104]

      Zhou, L. Y.; Yan, S. C.; Pan, L. J.; Wang, X. R.; Wang, Y. Q.; Shi, Y. Nano Res. 2016, 9, 857.  doi: 10.1007/s12274-015-0966-9

    105. [105]

      Seng, K. H.; Du, G. D.; Li, L.; Chen, Z. X.; Liu, H. K.; Guo, Z. P. J. Mater. Chem. 2012, 22, 16072.  doi: 10.1039/c2jm32822d

    106. [106]

      Cao, Y.; Lin, X. G.; Zhang, C. L.; Yang, C.; Zhang, Q.; Hu, W. Q.; Zheng, M. S.; Dong, Q. F. RSC Adv. 2014, 4, 30150.  doi: 10.1039/C4RA02838D

    107. [107]

      Chang, K.; Chen, W. X. ACS Nano 2011, 5, 4720.  doi: 10.1021/nn200659w

    108. [108]

      Luo, Z. G.; Zhou, J.; Wang, L. R.; Fang, G. Z.; Pan, A. Q.; Liang, S. Q. J. Mater. Chem. A 2016, 4, 15302.  doi: 10.1039/C6TA04390A

    109. [109]

      Wang, J. Y.; Zhao, X. M.; Fu, Y. S.; Wang, X. Appl. Surf. Sci. 2017, 399, 237.  doi: 10.1016/j.apsusc.2016.12.029

    110. [110]

      Soon, J. M.; Loh, K. P. Electrochem. Solid-State Lett. 2007, 10, 250.  doi: 10.1149/1.2778851

    111. [111]

      Zhou, J.; Fang, G. Z.; Pan, A. Q.; Liang, S. Q. ACS Appl. Mater. Interfaces 2016, 8, 33681.  doi: 10.1021/acsami.6b11811

    112. [112]

      Zheng, N. F.; Bu, X. H.; Feng, P. Y. Nature 2003, 426, 428.  doi: 10.1038/nature02159

    113. [113]

      Xiao, J.; Choi, D.; Cosimbescu, L.; Koech, P.; Liu, J.; Lemmon, J. P. Chem. Mater. 2010, 22.

    114. [114]

      Wang, J.; Wu, Z. C.; Hu, K. H.; Chen, X. Y.; Yin, H. B. J. Alloys Compd. 2015, 619, 38.  doi: 10.1016/j.jallcom.2014.09.008

    115. [115]

      Nørskov, J. K.; Bligaard, T.; Rossmeisl, J.; Christensen, C. H. Nat. Chem. 2009, 1, 37.  doi: 10.1038/nchem.121

    116. [116]

      Hinnemann, B.; Moses, P. G.; Bonde, J.; Jorgensen, K. P.; Nielsen, J. H.; Horch, S.; Chorkendorff, I.; Nørskov, J. K. J. Am. Chem. Soc. 2005, 127, 5308.  doi: 10.1021/ja0504690

    117. [117]

      Li, Y. G.; Wang, H. L.; Xie, L. M.; Liang, Y. Y.; Hong, G. S.; Dai, H. J. J. Am. Chem. Soc. 2011, 133, 7296.  doi: 10.1021/ja201269b

    118. [118]

      Li, T. S.; Galli, G. J. Phys. Chem. C 2007, 111, 16192.  doi: 10.1021/jp075424v

    119. [119]

      Tsai, C.; Chan, K.; Abild-Pedersen, F.; Nørskov, J. K. Phys. Chem. Chem. Phys. 2014, 16, 13156.  doi: 10.1039/C4CP01237B

    120. [120]

      Jaramillo, T. F.; Jorgensen, K. P.; Bonde, J.; Nielsen, J. H.; Horch, S.; Chorkendorff, I. Science 2007, 317, 100.  doi: 10.1126/science.1141483

    121. [121]

      Skulason, E.; Karlberg, G. S.; Rossmeisl, J.; Bligaard, T.; Greeley, J.; Jonsson, H.; Norskov, J. K. Phys. Chem. Chem. Phys. 2007, 9, 3241.  doi: 10.1039/B700099E

    122. [122]

      Xu, X. B.; Sun, Y.; Qiao, W.; Zhang, X.; Chen, X.; Song, X. Y.; Wu, L. Q.; Zhong, W.; Du, Y. W. Appl. Surf. Sci. 2017, 396, 1520.  doi: 10.1016/j.apsusc.2016.11.201

    123. [123]

      Wang, X. Q.; Chen, Y. F.; Zheng, B. J.; Qi, F.; He, J. R.; Li, Q.; Li, P. J.; Zhang, W. L. J. Alloys Compd. 2017, 691, 698.  doi: 10.1016/j.jallcom.2016.08.305

    124. [124]

      Chen, Z.; Cummins, D.; Reinecke, B. N.; Clark, E.; Sunkara, M. K.; Jaramillo, T. F. Nano Lett. 2011, 11, 4168.  doi: 10.1021/nl2020476

    125. [125]

      Yang, Y.; Wang, S. T.; Zhang, J. C.; Li, H. Y.; Tang, Z. L.; Wang, X. Inorg. Chem. Front. 2015, 2, 931.  doi: 10.1039/C5QI00126A

    126. [126]

      Ding, J. B.; Zhou, Y.; Li, Y. G.; Guo, S. J.; Huang, X. Q. Chem. Mater. 2016, 28, 2074.  doi: 10.1021/acs.chemmater.5b04815

    127. [127]

      Lukowski, M. A.; Daniel, A. S.; Meng, F.; Forticaux, A.; Li, L.; Jin, S. J. Am. Chem. Soc. 2013, 135, 10274.  doi: 10.1021/ja404523s

    128. [128]

      Voiry, D.; Salehi, M.; Silva, R.; Fujita, T.; Chen, M.; Asefa, T.; Shenoy, V. B.; Eda, G.; Chhowalla, M. Nano Lett. 2013, 13, 6222.  doi: 10.1021/nl403661s

    129. [129]

      Wang, D. Z.; Zhang, X. Y.; Bao, S. Y.; Zhang, Z. T.; Fei, H.; Wu, Z. Z. J. Mater. Chem. A 2017, 5, 2681.  doi: 10.1039/C6TA09409K

    130. [130]

      Lauritsen, J. V.; Nyberg, M.; Nørskov, J. K.; Clausen, B. S.; Topsøe, H.; Lægsgaard, E.; Besenbacher, F. J. Catal. 2004, 224, 94.  doi: 10.1016/j.jcat.2004.02.009

    131. [131]

      Tsverin, Y.; Popovitz-Biro, R.; Feldman, Y.; Tenne, R.; Komarneni, M. R.; Yu, Z. Q.; Chakradhar, A.; Sand, A.; Burghaus, U. Mater. Res. Bull. 2012, 47, 1653.  doi: 10.1016/j.materresbull.2012.03.053

    132. [132]

      Hur, Y. G.; Kim, M. S.; Lee, D. W.; Kim, S.; Eom, H. J.; Jeong, G.; No, M. H.; Nho, N. S.; Lee, K. Y. Fuel 2014, 137, 237.  doi: 10.1016/j.fuel.2014.07.094

    133. [133]

      Zhang, C. Y.; Liu, B. N.; Wang, Y. X.; Zhao, L.; Zhang, J.; Zong, Q. Y.; Gao, J. S.; Xu, C. M. RSC Adv. 2017, 7, 11862.  doi: 10.1039/C6RA27422F

    134. [134]

      Wang, X. D.; Zheng, Y. Y.; Yuan, J. H.; Shen, J. F.; Wang, A. J.; Niu, L.; Huang, S. T. Electrochim. Acta 2016, 212, 890.  doi: 10.1016/j.electacta.2016.07.078

  • 加载中
    1. [1]

      Zunyuan Xie Lijin Yang Zixiao Wan Xiaoyu Liu Yushan He . Exploration of the Preparation and Characterization of Nano Barium Titanate and Its Application in Inorganic Chemistry Laboratory Teaching. University Chemistry, 2024, 39(4): 62-69. doi: 10.3866/PKU.DXHX202310137

    2. [2]

      Simin Fang Wei Huang Guanghua Yu Cong Wei Mingli Gao Guangshui Li Hongjun Tian Wan Li . Integrating Science and Education in a Comprehensive Chemistry Design Experiment: The Preparation of Copper(I) Oxide Nanoparticles and Its Application in Dye Water Remediation. University Chemistry, 2024, 39(8): 282-289. doi: 10.3866/PKU.DXHX202401023

    3. [3]

      Yongming Guo Jie Li Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057

    4. [4]

      Juan Yuan Bin Zhang Jinping Wu Mengfan Wang . Design of a Comprehensive Experiment on Preparation and Characterization of Cu2(Salen)2 Nanomaterials with Two Distinct Morphologies. University Chemistry, 2024, 39(10): 420-425. doi: 10.3866/PKU.DXHX202402014

    5. [5]

      Qiuping Liu Yongxian Fan Wenxian Chen Mengdi Wang Mei Mei Genrong Qiang . Design of Ideological and Political Education for the Preparation Experiment of Ferrous Sulfate. University Chemistry, 2024, 39(2): 116-120. doi: 10.3866/PKU.DXHX202309083

    6. [6]

      Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020

    7. [7]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    8. [8]

      Tiantian Zheng Huiyi Wang Huimin Li Xuanhe Liu Hong Shang . Anti-Counterfeiting National Salvation Chronicle of 006. University Chemistry, 2024, 39(9): 254-258. doi: 10.3866/PKU.DXHX202307032

    9. [9]

      Miaomiao He Zhiqing Ge Qiang Zhou Jiaqing He Hong Gong Lingling Li Pingping Zhu Wei Shao . Exploring the Fascinating Realm of Quantum Dots. University Chemistry, 2024, 39(6): 231-237. doi: 10.3866/PKU.DXHX202310040

    10. [10]

      Laiying Zhang Yaxian Zhu . Exploring the Silver Family. University Chemistry, 2024, 39(9): 1-4. doi: 10.12461/PKU.DXHX202409015

    11. [11]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    12. [12]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    13. [13]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    14. [14]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    15. [15]

      Haiyuan Wang Yiming Tang Haoran Guo Guohui Chen Yajing Sun Chao Zhao Zhen Zhang . Comprehensive Chemistry Experimental Teaching Design Based on the Integration of Science and Education: Preparation and Catalytic Properties of Silver Nanomaterials. University Chemistry, 2024, 39(10): 219-228. doi: 10.12461/PKU.DXHX202404067

    16. [16]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    17. [17]

      Yinyin Qian Rui Xu . Utilizing VESTA Software in the Context of Material Chemistry: Analyzing Twin Crystal Nanostructures in Indium Antimonide. University Chemistry, 2024, 39(3): 103-107. doi: 10.3866/PKU.DXHX202307051

    18. [18]

      Min LIXianfeng MENG . Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1932-1942. doi: 10.11862/CJIC.20240065

    19. [19]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    20. [20]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

Metrics
  • PDF Downloads(368)
  • Abstract views(16364)
  • HTML views(4392)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return