Citation: Zhu Chan, Hai Yang, Zhao Zhigang, Yang Yaoyue. Preliminary Study of Ni and P Low-doped Pd-based Electrocatalysts Toward Ethanol Oxidation Reaction in Alkaline Media[J]. Acta Chimica Sinica, ;2018, 76(1): 30-34. doi: 10.6023/A17060279 shu

Preliminary Study of Ni and P Low-doped Pd-based Electrocatalysts Toward Ethanol Oxidation Reaction in Alkaline Media

  • Corresponding author: Yang Yaoyue, yaoyueyoung@swun.edu.cn
  • Received Date: 26 June 2017
    Available Online: 10 January 2017

    Fund Project: the Fundamental Research Funds for the Central Universities 2017NGJPY05the National Natural Science Foundation of China 21603177the Innovation Funds for SMU students 201610656050the Natural Science Foundation of Sichuan Province 2016JY0212Project supported by the National Natural Science Foundation of China (No. 21603177), the Natural Science Foundation of Sichuan Province (No. 2016JY0212), the Fundamental Research Funds for the Central Universities (No. 2017NGJPY05) and the Innovation Funds for SMU students (No. 201610656050)

Figures(5)

  • Among currently reported anodic nano-alloy electrocatlysts for direct alkaline ethanol fuel cells (DAEFCs), the mass fraction (w) of co-catalysts is generally larger than 20%. This could increase the thickness of the catalyst layer in Membrane Electrode Assembly (MEA), which not only decreases the discharge voltage of fuel cells, also reduces the utilization of the noble metals such as Pt and Pd. To solve this problem, here we synthesized a series of Pd-Ni-P alloy electrocatalysts with ultra-low doping amount of Ni and P, using ca. 1.5 mg NaH2PO2 as reducing agent. To obtain different doping amount of Ni and P, the pH value of the synthetic solution was adjusted from 8 to 12 by 0.1 mol/L NaOH. Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-AES) results showed that the mass fraction of Ni and P were low to 0.2% and 0.05%, respectively, when the pH value of the synthetic solution is 10. Transmission Electron Microscopy (TEM) images showed that nanoparticles were distributed evenly on the carbon base, and their mean particle sizes increased from ca. 3.78 nm to ca. 5.4 nm with alkalinity of synthetic solutions increasing. Cyclic Voltammograms in 0.5 mol/L CH3CH2OH+1 mol/L NaOH solution revealed that the catalyst obtained under the pH 10 synthetic solution (hereafter denoted as Pd-Ni-P/C-pH10) gave a highest apparent current density of ca. 2466 mA•mg-1 Pd, nearly 2.7 times in respect of that of the commercial Pd/C catalyst (JM). Meanwhile, the durability of Pd-Ni-P/C-pH10 for ethanol oxidation was improved by ca. 2.8 times compared to commercial catalyst. Relative to pure Pd, the binding energy of Pd 3d5/2 of as-prepared catalysts all positively shifted, suggesting an obvious electronic interaction between Pd, Ni and P component in as-prepared catalysts. This interaction could led to a shift of the d-band center of Pd component, which may play a pivotal and dominated role in improving the catalytic performance for the ethanol electrooxidation in alkaline media.
  • 加载中
    1. [1]

      Antolini, E.; Gonzalez, E. J. Power Sources 2010, 195, 3431.  doi: 10.1016/j.jpowsour.2009.11.145

    2. [2]

      Rabis, A.; Rodriguez, P.; Schmidt, T. J. ACS Catalysis 2012, 2, 864.  doi: 10.1021/cs3000864

    3. [3]

      Xie, S.-W.; Chen, S.; Liu, Z.-Q.; Xu, C.-W. Int. J. Electrochem. Sci 2011, 6, 882.
       

    4. [4]

      Wang, Y.; Zou, S.; Cai, W.-B. Catalysis 2015, 5, 1507.
       

    5. [5]

      Bianchini, C.; Shen, P. K. Chem. Rev. 2009, 109, 4183.  doi: 10.1021/cr9000995

    6. [6]

      Antolini, E. J. Power Sources 2007, 170, 1.  doi: 10.1016/j.jpowsour.2007.04.009

    7. [7]

      Demirci, U. B. J. Power Sources 2007, 173, 11.  doi: 10.1016/j.jpowsour.2007.04.069

    8. [8]

      Kitchin, J. R.; Nørskov, J. K.; Barteau, M. A.; Chen, J. Phys. Rev. Lett. 2004, 93, 156801.  doi: 10.1103/PhysRevLett.93.156801

    9. [9]

      Liu, P.; Nørskov, J. K. Phys. Chem. Chem. Phys. 2001, 3, 3814.  doi: 10.1039/b103525h

    10. [10]

      Vigier, F.; Coutanceau, C.; Hahn, F.; Belgsir, E.; Lamy, C. J. Electroanal. Chem. 2004, 563, 81.  doi: 10.1016/j.jelechem.2003.08.019

    11. [11]

      Yajima, T.; Uchida, H.; Watanabe, M. J. Phys. Chem. B 2004, 108, 2654.  doi: 10.1021/jp037215q

    12. [12]

      Wang, Y.; Shi, F.-F.; Yang, Y.-Y.; Cai, W.-B. J. Power Sources 2013, 243, 369.  doi: 10.1016/j.jpowsour.2013.06.021

    13. [13]

      Jiang, R.; Tran, D. T.; McClure, J. P.; Chu, D. ACS Catal. 2014, 4, 2577.  doi: 10.1021/cs500462z

    14. [14]

      Chen, L.; Lu, L.; Zhu, H.; Chen, Y.; Huang, Y.; Li, Y.; Wang, L. Nat. Commun. 2017, 8, 14136.  doi: 10.1038/ncomms14136

    15. [15]

      Qi, Z.; Geng, H.; Wang, X.; Zhao, C.; Ji, H.; Zhang, C.; Xu, J.; Zhang, Z. J. Power Sources 2011, 196, 5823.  doi: 10.1016/j.jpowsour.2011.02.083

    16. [16]

      Ahmed, M. S.; Jeon, S. ACS Catal. 2014, 4, 1830.  doi: 10.1021/cs500103a

    17. [17]

      Ma, L.; He, H.; Hsu, A.; Chen, R. J. Power Sources 2013, 241, 696.  doi: 10.1016/j.jpowsour.2013.04.051

    18. [18]

      Du, W.; Mackenzie, K. E.; Milano, D. F.; Deskins, N. A.; Su, D.; Teng, X. ACS Catal. 2012, 2, 287.  doi: 10.1021/cs2005955

    19. [19]

      Mao, H.; Wang, L.; Zhu, P.; Xu, Q.; Li, Q. Int. J. Hydrogen Energy 2014, 39, 17583.  doi: 10.1016/j.ijhydene.2014.08.079

    20. [20]

      Huang, M.-H.; Jin, B.-Y.; Zhao, L.-H.; Sun, S.-G. Acta Phys.-Chim. Sin. 2017, 33, 563(in Chinese).  doi: 10.3866/PKU.WHXB201612072

    21. [21]

      Tao, X.; Li, L.; Qi, X.; Wei, Z. Acta Chim. Sinica 2016, 75, 237(in Chinese).
       

    22. [22]

      Lai, Q.-Z.; Yin, G.-P.; Wang, Z.-B. J. Chem. Eng. Chin. Univ. 2009, 23, 756(in Chinese).  doi: 10.3321/j.issn:1003-9015.2009.05.005

    23. [23]

      Wang, N.; Zhang, W.; Wang, Y.-X. Chem. Ind. Eng. 2017, 34, 80(in Chinese).
       

    24. [24]

      Wang, J.-Y.; Kang, Y.-Y.; Yang, H.; Cai, W.-B. J. Phys. Chem. C 2009, 113, 8366.
       

    25. [25]

      Yang, G.; Chen, Y.; Zhou, Y.; Tang, Y.; Lu, T. Electrochem. Commun. 2010, 12, 492.  doi: 10.1016/j.elecom.2010.01.029

    26. [26]

      Mao, X. Y.; Liang, X. P.; Liu, J.; Liu, L.; Liu, K. Key Eng. Mater. 2014, 633, 330.  doi: 10.4028/www.scientific.net/KEM.633

    27. [27]

      Dutta, A.; Datta, J. J. Phys. Chem. C 2012, 116, 25677.  doi: 10.1021/jp305323s

    28. [28]

      Yin, J.; Shan, S.; Ng, M. S.; Yang, L.; Mott, D.; Fang, W.; Kang, N.; Luo, J.; Zhong, C. J. Langmuir 2013, 29, 9249.  doi: 10.1021/la401839m

    29. [29]

      Mao, H.; Huang, T.; Yu, A. S. J. Mater. Chem. A 2014, 2, 16378.  doi: 10.1039/C4TA03911D

    30. [30]

      Li, L.; Chen, M.; Huang, G.; Yang, N.; Zhang, L.; Wang, H.; Liu, Y.; Wang, W.; Gao, J. J. Power Sources 2014, 263, 13.  doi: 10.1016/j.jpowsour.2014.04.021

    31. [31]

      Huang, Z.; Zhou, H.; Li, C.; Zeng, F.; Fu, C.; Kuang, Y. J. Mater. Chem. 2012, 22, 1781.  doi: 10.1039/C1JM13024B

    32. [32]

      Shen, S.; Zhao, T.; Xu, J.; Li, Y. J. Power Sources 2010, 195, 1001.  doi: 10.1016/j.jpowsour.2009.08.079

    33. [33]

      Wakisaka, M.; Mitsui, S.; Hirose, Y.; Kawashima, K.; Uchida, H.; Watanabe, M. J. Phys. Chem. B 2006, 110, 23489.  doi: 10.1021/jp0653510

    34. [34]

      Wang, J.-Y.; Zhang, H.-X.; Jiang, K.; Cai, W.-B. J. Am. Chem. Soc. 2011, 133, 14876.  doi: 10.1021/ja205747j

    35. [35]

      Rodriguez, P.; Kwon, Y.; Koper, M. T. Nat. Chem. 2012, 4, 177.  doi: 10.1038/nchem.1221

    36. [36]

      Yang, Y.-Y.; Ren, J.; Li, Q.-X.; Zhou, Z.-Y.; Sun, S.-G.; Cai, W.-B. ACS Catal. 2014, 4, 798.  doi: 10.1021/cs401198t

  • 加载中
    1. [1]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    2. [2]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    3. [3]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    4. [4]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    5. [5]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    6. [6]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    7. [7]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    8. [8]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    9. [9]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    10. [10]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    11. [11]

      Qianqian Liu Xing Du Wanfei Li Wei-Lin Dai Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016

    12. [12]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    13. [13]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    14. [14]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    15. [15]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    16. [16]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    17. [17]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    18. [18]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

    19. [19]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    20. [20]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

Metrics
  • PDF Downloads(3)
  • Abstract views(1438)
  • HTML views(163)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return