Citation: Sha Jingjie, Xu Bing, Chen Yunfei, Yang Yanjing. Experimental Research of Protein Translocation Using Solid-state Nanopore[J]. Acta Chimica Sinica, ;2017, 75(11): 1121-1125. doi: 10.6023/A17060271 shu

Experimental Research of Protein Translocation Using Solid-state Nanopore

  • Corresponding author: Sha Jingjie, major212@seu.edu.cn
  • Received Date: 16 June 2017
    Available Online: 7 November 2017

    Fund Project: the National Natural Science Foundation of China 51675101the National Natural Science Foundation of China 51375092the Fundamental Research Funds for the Central Universities 2242015R30002the National Natural Science Foundation of China 51435003Project supported by the National Natural Science Foundation of China (Nos. 51375092, 51435003 and 51675101) and the Fundamental Research Funds for the Central Universities (No. 2242015R30002)

Figures(5)

  • For proteins' diverse range of structural and functional features, they are important populations of biomolecules within organisms. Common methods to detect proteins are with the help of fluorescence or enzyme. Due to the advantages like lable-free and single-molecule detection, nanopore technology provides a novel platform for proteins' characterization. In this experiment, the patch clamp amplifier is used to apply the voltage and acquire the tiny current blockage. The Si3N4 membrane drilled with a nanopore separated the buffer solution into two sides:cis and trans. When the voltage applied into the buffer solution, charged proteins would been driven through the pore from one side to the other. Then, a series of current blockages could be obtained. By analysing these data, the size and conformation of the biomolecules could be acquired. In this paper, we using solid-state nanopore detected single protein and protein-protein complexes. The nanopore was characterized firstly. Then, both the applied voltage and the pH of the electrolyte solution were regulated. Under the low voltage, the sample proteins could be regarded as a rigid spheroid, and the dwell time is decreased with the voltage increasing. It was found that, the charges carried by proteins could be improved by higher pH of buffer solution, so that the dwell time would been shortened. Furthermore, based on the high specific between the antigen and antibody which are proteins, the translocation events before and after the addition of specific antigen into the solution with antibody were compared. Results showed that the relative current drop of the complex is larger than the pure antibody, implying that the antigen has been bound into the antibody. Due to the difference of excluded volume, the antibody and antigen-antibody complexes could be distinguished by the solid-state nanopore. In the future, the nanopore technology is promising to be applied into the recognition of multiply proteins and protein-protein interaction.
  • 加载中
    1. [1]

      Wang, J.-Y. Biochemistry 1, Higher Education Press, Beijing, 2002, pp. 123~124.

    2. [2]

      Li, C.-Y. Basic Immunology, Science Press, Beijing, 2012, pp. 35~39 (in Chinese).

    3. [3]

      Waduge, P.; Hu, R.; Bandarkar, P.; Yamazaki, H.; Cressiot, B.; Zhao, Q.; Whitford, P. C.; Wanunu, M. ACS Nano 2017, 11, 5706.  doi: 10.1021/acsnano.7b01212

    4. [4]

      Zhang, J.-Y.; Zhou, X.-Y.; Zhou, M.; Jia, H.-X. Acta Chim. Sinica 2016, 74, 513(in Chinese).  doi: 10.3969/j.issn.0253-2409.2016.05.001
       

    5. [5]

      Deamer, D.; Akeson, M.; Branton, D. Nat. Biotechnol. 2016, 34, 518.  doi: 10.1038/nbt.3423

    6. [6]

      Dekker, C. Nat. Nanotechnol. 2007, 2, 209.  doi: 10.1038/nnano.2007.27

    7. [7]

      Howorka, S.; Cheley, S.; Bayley, H. Nat. Biotechnol. 2001, 19, 636.  doi: 10.1038/90236

    8. [8]

      Meller, A.; Nivon, L.; Branton, D. Phys. Rev. Lett. 2001, 86, 3435.  doi: 10.1103/PhysRevLett.86.3435

    9. [9]

      Nakane, J. J.; Akeson, M.; Marziali, A. J. Phys.-Condens. Matter 2003, 15, 1365.  doi: 10.1088/0953-8984/15/32/203

    10. [10]

      Storm, A. J.; Storm, C.; Chen, J. H.; Zandbergen, H.; Joanny, J. F.; Dekker, C. Nano Lett. 2005, 5, 1193.  doi: 10.1021/nl048030d

    11. [11]

      Ying, Y. L.; Cao, C.; Long, Y. T. Analyst 2014, 139, 3826.  doi: 10.1039/C4AN00706A

    12. [12]

      Oukhaled, A.; Bacri, L.; Pastoriza-Gallego, M.; Betton, J. M.; Pelta, J. ACS Chem. Biol. 2012, 7, 1935.  doi: 10.1021/cb300449t

    13. [13]

      Kasianowicz, J. J.; Brandin, E.; Branton, D.; Deamer, D. W. Proceedings of the National Academy of Sciences of the United States of America 1996, 93, 13770.  doi: 10.1073/pnas.93.24.13770

    14. [14]

      Wendell, D.; Jing, P.; Geng, J.; Subramaniam, V.; Lee, T. J.; Montemagno, C.; Guo, P. Nat. Nanotechnol. 2009, 4, 765.  doi: 10.1038/nnano.2009.259

    15. [15]

      Cao, C.; Liao, D.-F.; Ying, Y.-L.; Long, Y.-T. Acta Chim. Sinica 2016, 74, 734(in Chinese).
       

    16. [16]

      Ma, J.; Qiu, Y. H.; Yuan, Z. S.; Zhang, Y.; Sha, J. J.; Liu, L.; Sun, L. T.; Ni, Z. H.; Yi, H.; Li, D. Y.; Chen, Y. F. Phys. Rev. E 2015, 92, 022719.  doi: 10.1103/PhysRevE.92.022719

    17. [17]

      Wang, Y.; Yu, X.-F.; Liu, Y.-Y.; Xie, X.; Cheng, X.-L.; Huang, S.-M.; Wang, Z.-M. Acta Chim. Sinica 2014, 72, 378(in Chinese).
       

    18. [18]

      Jiang, Y.-N.; Guo, W. Sci. Bull. 2015, 60, 491.  doi: 10.1007/s11434-015-0739-6

    19. [19]

      Guo, W.; Jiang, L. Sci. China Matter 2014, 57, 2.  doi: 10.1007/s40843-014-0005-z

    20. [20]

      Su, B.; Guo, W.; Jiang L. Small 2015, 11, 1072.  doi: 10.1002/smll.v11.9-10

    21. [21]

      Wu, L.-Z.; Liu, Y.-Q.; Liu, W.; Chen, D.; Chen, H. Acta Biophys. Sinica 2014, 5, 360(in Chinese).
       

    22. [22]

      Farimani, A. B.; Heiranian, M.; Min, K.; Aluru, N. R. J. Phys. Chem. Lett. 2017, 8, 1670.  doi: 10.1021/acs.jpclett.7b00385

    23. [23]

      Freedman, K. J.; Jurgens, M.; Prabhu, A.; Ahn, C. W.; Jemth, P.; Edel, J. B.; Kim, M. J. Anal. Chem. 2011, 83, 5137.  doi: 10.1021/ac2001725

    24. [24]

      Niedzwiecki, D. J.; Grazul, J.; Movileanu, L. J. Am. Chem. Soc. 2010, 132, 10816.  doi: 10.1021/ja1026858

    25. [25]

      Ying, Y.-L.; Zhang, X.; Liu, Y.; Xue, M.-Z.; Li, H.-L.; Long, Y.-T. Acta Chim. Sinica 2013, 71, 44(in Chinese).
       

    26. [26]

      Ying, Y.-L.; Long, Y.-T. Sci. Chi. Chem. 2017, 60, doi:10.1007/s11426-017-9082-5.  doi: 10.1007/s11426-017-9082-5

    27. [27]

      Reiner, J. E.; Balijepalli, A.; Robertson, J. W. F.; Campbell, J.; Suehle, J.; Kasianowicz, J. J. Chem. Rev. 2012, 112, 6431.  doi: 10.1021/cr300381m

    28. [28]

      Saleh, O. A.; Sohn, L. L. Proc. Natl. Acad. Sci. U. S. A. 2003, 100, 820.  doi: 10.1073/pnas.0337563100

    29. [29]

      Takakura, T.; Yanagi, I.; Goto, Y.; Ishige, Y.; Kohara, Y. Appl. Phys. Lett. 2016, 108, 123701.  doi: 10.1063/1.4944641

    30. [30]

      Alzghoul, S.; Hailat, M.; Zivanovic, S.; Que, L.; Shah, G. V. Biosens. Bioelectron. 2016, 77, 491.  doi: 10.1016/j.bios.2015.10.006

    31. [31]

      Kwak, D. K.; Chae, H.; Lee, M. K.; Ha, J. H.; Goyal, G.; Kim, M. J.; Kim, K. B.; Chi, S. W. Angew Chem., Int. Ed. 2016, 55, 5713.  doi: 10.1002/anie.201511601

    32. [32]

      Wang, S.; Haque, F.; Rychahou, P. G.; Evers, B. M.; Guo, P. ACS Nano 2013, 7, 9814.  doi: 10.1021/nn404435v

    33. [33]

      Han, A.; Creus, M.; Schurmann, G.; Linder, V.; Ward, T. R.; de Rooij, N. F.; Staufer, U. Anal. Chem. 2008, 80, 4651.  doi: 10.1021/ac7025207

    34. [34]

      Freedman, K. J.; Bastian, A. R.; Chaiken, I.; Kim, M. J. Small 2013, 9, 750.  doi: 10.1002/smll.v9.5

    35. [35]

      Peters, T. Adv. Protein. Chem. 1985, 37, 161.  doi: 10.1016/S0065-3233(08)60065-0

    36. [36]

      Li, J. L.; Talaga, D. S. J. Phys.-Condens. Matter 2010, 22, 454.

    37. [37]

      Ling, D. Y.; Ling, X. S. J. Phys.-Condens. Matter 2013, 25, 375102.  doi: 10.1088/0953-8984/25/37/375102

    38. [38]

      Li, J. L.; Fologea, D.; Rollings, R.; Ledden, B. Protein and Peptide Letters. 2014, 21, 256.  doi: 10.2174/09298665113209990077

    39. [39]

      Deblois, R. W.; Bean, C. P. Rev. Sci. Instrum. 1970, 41, 909.  doi: 10.1063/1.1684724

    40. [40]

      Han, A. P.; Schurmann, G.; Mondin, G.; Bitterli, R. A.; Hegelbach, N. G.; de Rooij, N. F.; Staufer, U. Appl. Phys. Lett. 2006, 88, 093901.  doi: 10.1063/1.2180868

    41. [41]

      Larkin, J.; Henley, R. Y.; Muthukumar, M.; Rosenstein, J. K.; Wanunu, M. Biophys. J. 2014, 106, 696.  doi: 10.1016/j.bpj.2013.12.025

  • 加载中
    1. [1]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    2. [2]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    3. [3]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    4. [4]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    5. [5]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    6. [6]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    7. [7]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    8. [8]

      Liwei Wang Guangran Ma Li Wang Fugang Xu . A Comprehensive Analytical Chemistry Experiment: Colorimetric Detection of Vitamin C Using Nanozyme and Smartphone. University Chemistry, 2024, 39(8): 255-262. doi: 10.3866/PKU.DXHX202312094

    9. [9]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    10. [10]

      Tao Jiang Yuting Wang Lüjin Gao Yi Zou Bowen Zhu Li Chen Xianzeng Li . Experimental Design for the Preparation of Composite Solid Electrolytes for Application in All-Solid-State Batteries: Exploration of Comprehensive Chemistry Laboratory Teaching. University Chemistry, 2024, 39(2): 371-378. doi: 10.3866/PKU.DXHX202308057

    11. [11]

      Pingwei Wu . Application of Diamond Software in Simplex Teaching. University Chemistry, 2024, 39(3): 118-121. doi: 10.3866/PKU.DXHX202311043

    12. [12]

      Wenqi Gao Xiaoyan Fan Feixiang Wang Zhuojun Fu Jing Zhang Enlai Hu Peijun Gong . Exploring Nernst Equation Factors and Applications of Solid Zinc-Air Battery. University Chemistry, 2024, 39(5): 98-107. doi: 10.3866/PKU.DXHX202310026

    13. [13]

      Rui Li Huan Liu Yinan Jiao Shengjian Qin Jie Meng Jiayu Song Rongrong Yan Hang Su Hengbin Chen Zixuan Shang Jinjin Zhao . 卤化物钙钛矿的单双向离子迁移. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-. doi: 10.3866/PKU.WHXB202311011

    14. [14]

      Fei Xie Chengcheng Yuan Haiyan Tan Alireza Z. Moshfegh Bicheng Zhu Jiaguo Yud带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013

    15. [15]

      Di Yang Jiayi Wei Hong Zhai Xin Wang Taiming Sun Haole Song Haiyan Wang . Rapid Detection of SARS-CoV-2 Using an Innovative “Magic Strip”. University Chemistry, 2024, 39(4): 373-381. doi: 10.3866/PKU.DXHX202312023

    16. [16]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    17. [17]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    18. [18]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    19. [19]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    20. [20]

      Qilong Fang Yiqi Li Jiangyihui Sheng Quan Yuan Jie Tan . Magical Pesticide Residue Detection Test Strips: Aptamer-based Lateral Flow Test Strips for Organophosphorus Pesticide Detection. University Chemistry, 2024, 39(5): 80-89. doi: 10.3866/PKU.DXHX202310004

Metrics
  • PDF Downloads(6)
  • Abstract views(2181)
  • HTML views(193)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return