Citation: Liu Xinxin, Yan Long, Fu Yao. Lignin C-C Bond's Cleavage by Vanadium Catalyzed with High Selectivity in Acid Environment[J]. Acta Chimica Sinica, ;2017, 75(8): 788-793. doi: 10.6023/A17050199 shu

Lignin C-C Bond's Cleavage by Vanadium Catalyzed with High Selectivity in Acid Environment

  • Corresponding author: Fu Yao, fuyao@ustc.edu.cn
  • † Xinxin Liu and Long Yan contributed equally to this paper
  • Received Date: 8 May 2017
    Available Online: 9 August 2017

    Fund Project: the National Natural Science Foundation of China 21572212the National Natural Science Foundation of China 21402181Project supported by the National Natural Science Foundation of China (Nos.21325208, 21272050, 21402181, 21572212), the Index Program Directive Foundation of Hefei Centre for Physical Science and Technology (No.2014FXCX006), the Science Foundation of the Chinese Academy of Sciences (Nos.KFJ-EW-STS-051, XDB20000000, YZ201563), the Specialized Research Fund for the Doctoral Program of Higher Education (No.20123402130008), the Fundamental Research Funds for the Central Universities (Nos.WK2060190025, WK2060190040), the Key Technologies R & D Program of Anhui Province (No.1604a0702027) and the Program for Changjiang Scholars and Innovative Research Team in University of the Ministry of Education of Chinathe Key Technologies R & D Program of Anhui Province 1604a0702027the National Natural Science Foundation of China 21272050the Science Foundation of the Chinese Academy of Sciences KFJ-EW-STS-051the Fundamental Research Funds for the Central Universities WK2060190040the National Natural Science Foundation of China 21325208the Science Foundation of the Chinese Academy of Sciences XDB20000000the Science Foundation of the Chinese Academy of Sciences YZ201563the Fundamental Research Funds for the Central Universities WK2060190025the Index Program Directive Foundation of Hefei Centre for Physical Science and Technology 2014FXCX006the Specialized Research Fund for the Doctoral Program of Higher Education 20123402130008

Figures(6)

  • Lignin is a potential resources of aromatic compound that can be obtained from renewable biomass. There are many ongoing research efforts to utilize lignin as a sustainable alternative to petroleum derived aromatic compounds. Because of the complex three-dimensional structure, the depolymerization of lignin into monomer molecule became a core challenge for the utilization of lignin. The β-O-4 structure is the most abundant linkage in lignin. Owing to its abundance, the β-O-4 structure has been representatively studied in many aspects of scientific research on lignin degradation. Among the different reported strategies for the cleavage of β-O-4 ether bonds, C-C bond cleavage is one of the most important approaches to depolymerizing lignin. In this study, we accomplished the oxidative C-C bond cleavage of the β-O-4 structure by the catalysis of NH4VO3 using the pre-oxidized 2-phenoxy-1-phenylethanone (1a) as a model compound of lignin. In the DMSO-HOAc solvent system, benzoic acid and phenol were produced in a moderate condition, the yeild of benzoic acid and phenol were 82.1% and 88.1%, respectively. The reaction process was investigated via 1H NMR and X-ray photoelectron spectra (XPS) characterizations and the possible reaction pathway was further proposed. As the results shown, two possible reaction routes existed in this catalytic system. Pathway one:the 2-hydroxyacetophenone and phenol formed after the C-O bond cleavage of 1a in the acidic system, then, the intermediate 2-hydroxyacetophenone was converted to benzoic via the cleavage of C-C bond. Pathway two:benzoic acid and phenol yielded by the C-C bond of 1a cleaved directly over the catalyst. In addition, the catalyst characterization results confirmed that the oxovanadium(V) directly catalyzed the depolymerization of the β-O-4 structure and generated oxovanadium(Ⅳ), then oxovanadium(Ⅳ) was oxidized by O2 and finish the catalytic cycle. All reactions were carried out by the following general procedure. This reaction was carried out in glass tube and heated by oil bath. 0.5 mmol of 1a was added into 2 mL of DMSO-HOAc (V:V=3:1) with 30 mol% NH4VO3 (17.5 mg) under an oxygen atmosphere (101 kPa, in balloon). The reactor was heated to 100℃ with a powerful stirring. After 8 h, the reaction was cooled to room temperature, then 5 mL of ethyl acetate was added into the mixtures. Ash black precipitate was removed by filtration and the liquid mixture was detected by GC.
  • 加载中
    1. [1]

      Corma, A.; Iborra, S.; Velty, A. Chem. Rev. 2007, 107, 2411.  doi: 10.1021/cr050989d

    2. [2]

    3. [3]

    4. [4]

      (a) Xu, C. P.; Arancon, R. A. D.; Labidi, J.; Luque, R. Chem.Soc. Rev. 2014, 43, 7485. (b) Upton, B. M.; Kasko, A. M. Chem. Rev. 2016, 116, 2275. (c) Li, C. Z.; Zhao, X. C.; Wang, A. Q.; Huber, G. W.; Zhang, T. Chem. Rev. 2015, 115, 11559. (d) Deng, W. P.; Zhang, H. X.; Xue, L. Q.; Zhang, Q. H.; Wang, Y. Chin. J. Catal. 2015, 36, 1440.

    5. [5]

    6. [6]

      (a) Sergeev, A. G.; Hartwig, J. F. Science 2011, 332, 439. (b) Sergeev, A. G.; Webb, J. D.; Hartwig, J. F. J.Am. Chem. Soc. 2012, 134, 20226.

    7. [7]

    8. [8]

      Shiramizu, M.; Toste, F. D. Angew. Chem., Int. Ed. 2012, 51, 8082.  doi: 10.1002/anie.v51.32

    9. [9]

      Zakzeski, J.; Bruijnincx, P. C. A.; Jongerius, A. L.; Weckhuysen, B. M. Chem. Rev. 2010, 110, 3552.  doi: 10.1021/cr900354u

    10. [10]

      Alonso, D. M.; Wettstein, S.; G. Dumesic, J. A. Chem. Soc. Rev. 2012, 41, 8075.  doi: 10.1039/c2cs35188a

    11. [11]

    12. [12]

      (a) He, J.; Zhao, C.; Lercher, J. A. J. Am. Chem.Soc. 2012, 134, 20768. (b) Song, Q.; Wang, F.; Cai, J. Y.; Wang, Y. H.; Zhang, J. J.; Yu, W. Q.; Xu, J. Energy Environ. Sci.2013, 6, 994; (c) Wang, X.; Rinaldi, R. ChemSusChem 2012, 5, 1455. (d) Sturgeon, M. R.; O'Brien, M. R.; Ciesielski, P. N.; Katahira, R.; Kruger, J. S.; Chmely, S. C.; Hamlin, J.; Lawrence, K.; Hunsinger, G. B.; Foust, T. D.; Baldwin, R. M.; Biddy, M. J.; Beckham, G. T. Green Chem. 2014, 16, 824. (e) Song, Q.; Cai, J. Y.; Zhang, J. J.; Yu, W. Q.; Wang, F.; Xu, J. Chin. J. Catal. 2013, 34, 651.

    13. [13]

      Ren, Y. L.; Yan, M. J.; Wang, J. J.; Zhang, Z. C.; Yao, K. S. Angew. Chem., Int. Ed. 2013, 52, 12674.  doi: 10.1002/anie.201305342

    14. [14]

      Harm, R. G.; Markovits, I.-I. E.; Drees, M.; Mult, H. C.; Herrmann, W. A.; Cokoja, M.; Kuhn, F.-E. ChemSusChem 2014, 7, 429.  doi: 10.1002/cssc.201300918

    15. [15]

      Nichols, J. M.; Bishop, L. M.; Bergman, R. G.; Ellman, J. A. J. Am. Chem. Soc. 2010, 132, 12554.  doi: 10.1021/ja106101f

    16. [16]

    17. [17]

      (a) Guo, H. W.; Zhang, B.; Li, C. Z.; Peng, C.; Dai, T.; Xie, H. B.; Wang, A. Q.; Zhang, T. ChemSusChem 2016, 9, 3220. (b) Heather, J.; Parker, H. J.; Chuck, C. J.; Woodman, T.; Jones, M. D. Catal. Today 2016, 269, 40. (c) Xiao, Y. W.; Xiu, Y. L. Chin. J. Chem. 2011, 22, 733.

    18. [18]

      (a) Hanson, S. K.; Baker, R. T.; Gordon, J. C.; Scott, B. L.; Thorn, D. L. Inorg. Chem. 2010, 49, 5611. (b) Hanson, S. K.; Wu, R.; Silks, L. A. P. Angew. Chem., Int. Ed. 2012, 51, 3410. (c) Zhang, G.; Scott, B. L.; Wu, R. L.; Silks, L. A. P.; Hanson, S. K. Inorg. Chem. 2012, 51, 7354. (d) Sedai, B.; Urrutia, C. D.; Baker, R. T.; Wu, R. L.; Silks, L. A. P.; Hanson, S. K. ACS. Catal.2013, 3, 3111. (e) Diaz-Urrutia, C.; Sedai, B.; Leckett, K. C.; Baker, R. T.; Hanson, S. ACS Sustanable Chem. Eng. 2016, 4, 6244.

    19. [19]

      (a) Ma, Y. Y.; Du, Z. T.; Liu, J. X.; Xia, F.; Xu, J. Green Chem.2015, 17, 4968. (b) Ma, Y. Y.; Du, Z. T.; Xia, F.; Ma, J. P.; Gao, J.; Xu, J. RSC Adv. 2016, 6, 110229.

    20. [20]

      (a) Gazi, S.; Ng, W. K. H.; Ganguly, R.; Moeljadi, A. M. P.; Soo, H. S. Chem. Sci. 2015, 6, 7130. (b) Mottweiler, J.; Puche, M.; Rauber, C.; Schmidt, T.; Concepcion, P.; Corma, A.; Bolm, C. ChemSusChem 2015, 8, 1206.

    21. [21]

      (a) Mottweiler, J.; Rinesch, T.; Besson, C.; Buendia, J.; Bolm, C. Green Chem. 2015, 17, 5001. (b) Stein, T V.; Hartog, T. D.; Buendia, J.; Stoychev, S.; Mottweiler, J.; Bolm, C.; Klankermayer, J.; Leitner, W. Angew. Chem., Int.Ed. 2015, 54, 5859. (c) Deng, W. P.; Zhang, H. X.; Wu, X. J.; Li, R. S.; Zhang, Q. H.; Wang, Y. Green Chem. 2015, 17, 5009. (d) Mitchell, L. J.; Moody, C. J. J. Org. Chem. 2014, 79, 11091.

    22. [22]

      (a) Rahimi, A.; Ulbrich, A.; Coon, J. J.; Stahl, S. S. Nature 2015, 515, 249. (b) Rahimi, A.; Azarpira, A.; Kim, H.; Ralph, J.; Stahl, S. S. J. Am. Chem. Soc. 2013, 135, 6415.

    23. [23]

      (a) Patil, N. D.; Yan, N. Catal. Commun. 2016, 84, 155. (b) Yao, S. G.; Meier, M. S.; Pace Ⅲ, R. B.; Crocker, M. RSC Adv.2016, 6, 104742. (c) Mobley, J. K.; Yao, S. G.; Crocker, M.; Meier, M. RSC Adv. 2015, 5, 105136. (d) Nguyen, J. D.; Matsuura, B. S.; Stepemson, C. R. J. J. Am. Chem. Soc. 2014, 136, 1218. (e) Luo, J.; Zhang, J. J. Org. Chem. 2016, 81, 9131. (f) Karakas, D. M.; Bosque, I.; Stephenson, C. R. J. Org.Lett. 2016, 18, 5166.

    24. [24]

      (a) Wang, M.; Lu, J. M.; Zhang, X. C.; Li, L. H.; Li, Hong. J.; Luo, N. C.; Wang, F. ACS Catal. 2016, 6, 6086. (b) Wang, M.; Li, L. H.; Lu, J. M.; Li, H. J.; Zhang, X. C.; Liu, H. F.; Luo, N. C.; Wang, F. Green Chem. 2017, 19, 702. (c) Liu, H. F.; Wang, M.; Li, H. J.; Luo, N. C.; Xu, S. T.; Wang, F. J. Catal. 2017, 346, 170.

    25. [25]

      (a) Yang, Y. Y.; Fan, H. L.; Song, J. L.; Meng, Q. L.; Zhou, H. C.; Wu, L. Q.; Yang, G. Y.; Han, B. X. Chem. Coummn. 2015, 51, 4028. (b) Paitil, N. D.; Yan, N. Tetrahedron Lett. 2016, 57, 3024.

    26. [26]

      (a) Luo, N. C.; Wang, M.; Li, H.; Zhang, J.; Liu, H.; Wang, F. ACS Catal. 2016, 6, 7716. (b) Zhang, J.; Liu, Y.; Chiba, S.; Loh, T.-P. Chem. Commun. 2013, 49, 11439.

    27. [27]

      Dakkach, M.; Atlamsani, A.; Sebti, S. C. R. Chim. 2012, 15, 482.  doi: 10.1016/j.crci.2012.03.003

    28. [28]

      (a) Wang, W. H.; Niu, M.; Hou, Y. C.; Wu, W. Z.; Liu, Z. Y.; Liu, Q. Y.; Ren, S. H.; Marsh, K. N. Green Chem. 2014, 16, 2614. (b) Niu, M.; Hou, Y.-C.; Ren, S. H.; Wang, W. H.; Zheng, Q. T.; Wu, W. Z. Green Chem. 2015, 17, 335. (c) Niu, M.; Hou, Y. C.; Ren, S. H.; Wu, W. Z.; Marsh, K. N. Green Chem. 2015, 17, 453.

    29. [29]

    30. [30]

      (a) Shuai, L.; Amiri, M. T.; Questell-Santiago, Y. M.; Heroguel, F.; Li, Y. D.; Kim, H.; Meilan, R.; Chapple, C.; Ralph, J.; Luterbacher, J. Science 2016, 354, 329. (b) Wang, L.; Meng, Y. Z.; Wang, S. J.; Shang, X. Y.; Li, L.; Hay, A. S. Macromolecules 2004, 37, 3151.

    31. [31]

      Huang, X. Q.; Li, X. Y.; Zou, M. C.; Song, S.; Tang, C. H.; Yuan, Y. Z.; Jiao, N. J. Am. Chem. Soc. 2014, 136, 14858.  doi: 10.1021/ja5073004

    32. [32]

      Jiang, Y. Y.; Yan, L.; Zhang, Q.; Fu, Y. ACS Catal. 2016, 6, 4399.  doi: 10.1021/acscatal.6b00239

  • 加载中
    1. [1]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    2. [2]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    3. [3]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    4. [4]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    5. [5]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    6. [6]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    7. [7]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    8. [8]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    9. [9]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    10. [10]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    11. [11]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    12. [12]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    13. [13]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    14. [14]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    15. [15]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    16. [16]

      Qianqian Liu Xing Du Wanfei Li Wei-Lin Dai Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016

    17. [17]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    18. [18]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    19. [19]

      Lei WanYizhou TongXi LuYao Fu . Cobalt-catalyzed reductive alkynylation to construct C(sp)-C(sp3) and C(sp)-C(sp2) bonds. Chinese Chemical Letters, 2024, 35(7): 109283-. doi: 10.1016/j.cclet.2023.109283

    20. [20]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

Metrics
  • PDF Downloads(9)
  • Abstract views(2231)
  • HTML views(120)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return