Citation: Lin Yao, Ying Yilun, Gao Rui, Wang Huifeng, Long Yitao. Analysis of Single-entity Anisotropy with a Solid-state Nanopore[J]. Acta Chimica Sinica, ;2017, 75(7): 675-678. doi: 10.6023/A17040191 shu

Analysis of Single-entity Anisotropy with a Solid-state Nanopore

  • Corresponding author: Ying Yilun, yilunying@ecust.edu.cn Wang Huifeng, whuifeng@ecust.edu.cn
  • Received Date: 30 April 2017

    Fund Project: the National Natural Science Foundation of China 21505043the Fundamental Research Funds for the Central Universities 222201714012the Fundamental Research Funds for the Central Universities 222201717003the National Natural Science Foundation of China 21327807the Fundamental Research Funds for the Central Universities 222201718001the National Natural Science Foundation of China 21421004

Figures(3)

  • Solid-state nanopore has emerging as a promising tool for detection and analysis of single molecules due to its advantages of high stability, easy control of diameter and channel length, and the potential for integration into devices and arrays.Therefore, there are intensive studies regarding nanopore-based detection of DNAs, proteins, polymers and other small molecules.The electrochemical confined space of nanopore could efficiently convert the information in single biological molecules with anisotropy characters into measurable electrochemical signatures with high temporal resolution.The anisotropy characters of each analyte, due to its featured physical and chemical properties in different directions, strongly affects the translocation behavior of each single entity (single molecule, single nanoparticle, etc.).To analyze the single-entity anisotropy effects on nanopore translocation, here, we employed gold nanorods (GNRs) as a model for single entities with anisotropy to investigate its translocation behavior through a solid-state nanopore.We performed the GNRs translocation experiments in 10 mmol·L-1 KCl (pH 8) electrolyte solution with a 100 nm SiNx solid-state nanopore.The current trace of GNRs translocation through nanopores had been recorded with an ultra-sensitive current amplifier at a sampling rate of 100 kHz filtered at 5 kHz via a low-pass Bessel filter.At applied voltage of-600 mV, two types of characteristic current blockades were observed when single GNRs translocate through the pore.We found this two types of blockades are mainly related to two translocation orientation of GNRs due to its anisotropy.The smaller current blockades are due to the GNR passing through the pore vertically while the larger current blockades are due to the GNR passing through the pore horizontally.To verify our observation of this two types of GNRs translocation events, we employed a simple model which is based on the relationship between the blockade magnitude and the exclude ion volume.The calculated current blockades of two types of GNRs translocation events agree well with the experimental values.These results illustrate that the anisotropy of single entity is an important factor that should be taken into consideration in nanopore translocation.This work will lead to a better understanding of the translocation behavior of single entity with anisotropy in the electrochemical confined space of nanopore.Such understanding is vital to the development of the solid-state nanopore system as a useful single molecule analytical device.
  • 加载中
    1. [1]

      Miles, B. N.; Ivanov, A. P.; Wilson, K. A.; Doğan, F.; Japrung, D.; Edel, J. B. Chem. Soc. Rev. 2013, 42, 15.  doi: 10.1039/C2CS35286A

    2. [2]

      Liu, L.; Wu, H.-C. Angew. Chem. Int. Ed. 2016, 55, 15216.  doi: 10.1002/anie.v55.49

    3. [3]

      Lin, Y.; Shi, X.; Liu, S.-C.; Ying, Y.-L.; Li, Q.; Gao, R.; Fathi, F.; Long, Y.-T.; Tian, H. Chem. Commun. 2017, 53, 3539.  doi: 10.1039/C7CC00060J

    4. [4]

      Zhang, Y.; Wu, G.; Ma, J.; Yuan, Z.; Si, W.; Liu, L.; Sha, J.; Chen, Y. Sci. China Technol. Sci. 2015, 58, 519.

    5. [5]

      Wang, H.-Y.; Ying, Y.-L.; Li, Y.; Kraatz, H.-B.; Long, Y.-T. Anal. Chem. 2011, 83, 1746.  doi: 10.1021/ac1029874

    6. [6]

      Hu, Y.-X.; Ying, Y.-L.; Gu, Z.; Cao, C.; Yan, B.-Y.; Wang, H.-F.; Long, Y.-T. Chem. Commun. 2016, 52, 5542.  doi: 10.1039/C6CC01292B

    7. [7]

      Kwak, D. K.; Chae, H.; Lee, M. K.; Ha, J. H.; Goyal, G.; Kim, M. J.; Kim, K. B.; Chi, S. W. Angew. Chem. Int. Ed. 2016, 55, 5713.  doi: 10.1002/anie.201511601

    8. [8]

      Ying, Y.-L.; Zhang, J.-J.; Gao, R.; Long, Y.-T. Angew. Chem. Int. Ed. 2013, 52, 13154.  doi: 10.1002/anie.201303529

    9. [9]

      Cao, C.; Liao, D.-F.; Ying, Y.-L.; Long, Y.-T. Acta Chim. Sinica 2016, 74, 734(in Chinese).
       

    10. [10]

      Long, Y.-T.; Zhang, M.-N. Sci. China Ser. B 2009, 52, 731.

    11. [11]

      Ying, Y.-L.; Zhang, X.; Liu, Y.; Xue, M.-Z.; Li, H.-L.; Long, Y.-T. Acta Chim. Sinica 2013, 71, 44(in Chinese).
       

    12. [12]

      Dekker, C. Nat. Nanotechnol. 2007, 2, 209.  doi: 10.1038/nnano.2007.27

    13. [13]

      Guo, W.; Tian, Y.; Jiang, L. Acc. Chem. Res. 2013, 46, 2834.  doi: 10.1021/ar400024p

    14. [14]

      Bell, N. A. W.; Keyser, U. F. J. Am. Chem. Soc. 2015, 137, 2035.  doi: 10.1021/ja512521w

    15. [15]

      Plesa, C.; Ruitenberg, J. W.; Witteveen, M. J.; Dekker, C. Nano Lett. 2015, 15, 3153.  doi: 10.1021/acs.nanolett.5b00249

    16. [16]

      Mahmood, M. A. I.; Ali, W.; Adnan, A.; Iqbal, S. M. J. Phys. Chem. B 2014, 118, 5799.  doi: 10.1021/jp411820w

    17. [17]

      Prabhu, A. S.; Jubery, T. Z. N.; Freedman, K. J.; Mulero, R.; Dutta, P.; Kim, M. J. J. Phys.:Condens. Matter 2010, 22, 454107.  doi: 10.1088/0953-8984/22/45/454107

    18. [18]

      Lan, W. J.; Holden, D. A.; Zhang, B.; White, H. S. Anal. Chem. 2011, 83, 3840.  doi: 10.1021/ac200312n

    19. [19]

      Arjmandi, N.; Van Roy, W.; Lagae, L.; Borghs, G. Anal. Chem. 2012, 84, 8490.  doi: 10.1021/ac300705z

    20. [20]

      Wang, Y.; Kececi, K.; Mirkin, M.; Mani, V. Chem. Sci. 2013, 4, 655.  doi: 10.1039/C2SC21502K

    21. [21]

      Venta, K.; Wanunu, M.; Drndić, M. Nano Lett. 2013, 13, 423.  doi: 10.1021/nl303576q

    22. [22]

      Venta, K. E.; Zanjani, M. B.; Ye, X.; Danda, G.; Murray, C. B.; Lukes, J. R.; Drndić, M. Nano Lett. 2014, 14, 5358.  doi: 10.1021/nl502448s

    23. [23]

      Goyal, G.; Freedman, K. J.; Kim, M. J. Anal. Chem. 2013, 85, 8180.  doi: 10.1021/ac4012045

    24. [24]

      Talaga, D. S.; Li, J. J. Am. Chem. Soc. 2009, 131, 9287.  doi: 10.1021/ja901088b

  • 加载中
    1. [1]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    2. [2]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    3. [3]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    4. [4]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    5. [5]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    6. [6]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    7. [7]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    8. [8]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    9. [9]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    10. [10]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    11. [11]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    12. [12]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    13. [13]

      Di WURuimeng SHIZhaoyang WANGYuehua SHIFan YANGLeyong ZENG . Construction of pH/photothermal dual-responsive delivery nanosystem for combination therapy of drug-resistant bladder cancer cell. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1679-1688. doi: 10.11862/CJIC.20240135

    14. [14]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    15. [15]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    16. [16]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    17. [17]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    18. [18]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    19. [19]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    20. [20]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

Metrics
  • PDF Downloads(43)
  • Abstract views(2177)
  • HTML views(359)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return