Citation: Gu Yueqing, Yuan Hao, Fu Junkai, Gong Jianxian, Yang Zhen. Asymmetric Formal Synthesis of Cortistatins via a Gold-Catalyzed Semi-Pinacol Rearrangement Strategy[J]. Acta Chimica Sinica, ;2017, 75(8): 798-807. doi: 10.6023/A17040190 shu

Asymmetric Formal Synthesis of Cortistatins via a Gold-Catalyzed Semi-Pinacol Rearrangement Strategy

  • Corresponding author: Fu Junkai, fujk109@nenu.edu.cn Gong Jianxian, gongjx@pkusz.edu.cn Yang Zhen, zyang@pku.edu.cn
  • Received Date: 28 April 2017
    Available Online: 7 August 2017

    Fund Project: the National Natural Science Foundation of China 21372016the National Natural Science Foundation of China 21632002Project supported by the National Natural Science Foundation of China (Nos.21372016, 21572009 and 21632002)the National Natural Science Foundation of China 21572009

Figures(15)

  • Over the past decade, Gold complexes have emerged as efficient and mild catalysts for the transformation of substrates possessing alkyne functionality into a range of useful scaffolds. These powerful methods have enabled the development of novel approaches for the total synthesis of biologically active natural products by gold catalysis. In this case, we found that the intramolecular nucleophilic addition of a hydroxyl group to a carbon-carbon triple bond, which activated by a gold catalyst, followed by further useful transformation has proven to be an excellent method for rapid construction of structural diversity of molecular scaffolds. The cortistatins are a family of 11 steroidal alkaloids which exhibit significant biological activities. The intriguing biological properties and their low natural abundance have elevated cortistatins to be a typical target for both partial and total synthesis. Up to now, more than a dozen research groups have published approaches directed toward the synthesis of cortistatins, including one semi-synthesis, five total syntheses and five formal syntheses, as well as a number of synthetic studies about the pentacyclic core and some illuminating model studies. One of the biggest challenges for the synthesis of cortistatins is how to construct the unprecedented oxabicyclo [3.2.1]octane ring system which lies within a complex tetracarbocyclic skeleton. In our previous work, we have developed a gold-catalyzed semi-pinacol rearrangement strategy to diastereoselective synthesis of the oxabicyclo [3.2.1]octane ring system. The wide substrate scope as well as the high diastereoselectivity have made us to apply this method into the asymmetric formal synthesis of Cortistatins. Herein, full details about our efforts towards the formal synthesis of cortistatins were described by employing our developed gold-catalyzed cascade reaction to oxabicyclo[3.2.1]octane ring systems. This route is featured with a novel gold-catalyzed cascade reaction involving intramolecular nucleophilic addition of hydroxyl group to the carbon-carbon triple bond, followed by an oxonium ion initiated semi-pinacol-type 1, 2-migration to construct the key oxabicyclo [3.2.1]octane skeleton.
  • 加载中
    1. [1]

      Aoki, S.; Watanabe, Y.; Sanagawa, M.; Setiawan, A.; Kotoku, N.; Kobayashi, M. J. Am. Chem. Soc. 2006, 128, 3148.  doi: 10.1021/ja057404h

    2. [2]

      (a) Aoki, S.; Watanabe, Y.; Tanabe, D.; Arai, M.; Suna, H.; Miyamoto, K.; Tsujibo, H.; Tsujikawa, K.; Yamamoto, H.; Kobayashi, M. Bioorg. Med.Chem. 2007, 15, 6758. (b) Watanabe, Y.; Aoki, S.; Tanabe, D.; Setiawan, A.; Kobayashi, M. Tetrahedron 2007, 63, 4074. (c) Aoki, S.; Watanabe, Y.; Tanabe, D.; Setiawan, A.; Arai, M.; Kobayashi, M. Tetrahedron Lett. 2007, 48, 4485.

    3. [3]

      For reviews on the synthesis of the cortistatins, see: (a) Nising, C. F.; Brase, S. Angew. Chem. Int. Ed. 2008, 47, 9389. Angew. Chem. 2008, 120, 9529. (b) Narayan, A. R. H.; Simmons, E. M.; Sarpong, R. Eur. J. Org. Chem.2010, 3553. (c) Chen, D. Y. K.; Tseng, C. C Org. Biomol. Chem.2010, 8, 2900.

    4. [4]

      (a) Shenvi, R. A.; Guerrero, C. A.; Shi, J.; Li, C. C.; Baran, P. S.J. Am. Chem. Soc. 2008, 130, 7241. (b) Shi, J.; Manolikakes, G.; Yeh, C. H.; Guerrero, C. A.; Shenvi, R. A.; Shigehisa, H.; Baran, P. S. J. Am. Chem. Soc. 2011, 133, 8014. (c) Nicolaou, K. C.; Sun, Y. P.; Peng, X. S.; Polet, D.; Chen, D. Y. Angew.Chem. Int. Ed. 2008, 47, 7310. Angew.Chem. 2008, 120, 7420. (d) Nicolaou, K. C.; Peng, X. S.; Sun, Y. P.; Polet, D.; Zou, B.; Lim, C. S. Chen, D. Y. J. Am. Chem.Soc. 2009, 131, 10587. (e) Lee, H. M.; Nieto-Oberhuber, C.; Shair, M. D. J. Am. Chem. Soc. 2008, 130, 16864. (f) Flyer, A. N.; Si, C.; Myers, A. G. Nat. Chem. 2010, 2, 886. (g) Yamashita, S.; Iso, K.; Kitajima, K.; Himuro, M.; Hirama, M.J. Org. Chem. 2011, 76, 2408. (h) Nilson, M. G.; Funk, R. L. J. Am. Chem. Soc. 2011, 133, 12451.

    5. [5]

      (a) Yamashita, S.; Iso, K.; Hirama, M. Org. Lett. 2008, 10, 3413. (b) Yamashita, S.; Kitajima, K.; Iso, K.; Hirama, M. Tetrahedron Lett. 2009, 50, 3277. (c) Simmons, E. M.; Hardin-Narayan, A. R.; Guo, X.; Sarpong, R. Tetrahedron 2010, 66, 4696. (d) Fang, L.; Chen, Y.; Huang, J.; Liu, L.; Quan, J.; Li, C. C.; Yang, Z. J. Org.Chem. 2011, 76, 2479. (e) Kuang, L. P.; Liu, L. L.; Chiu, P.Chem. Eur. J. 2015, 21, 14287.

    6. [6]

      (a) Dai, M.; Danishefsky, S. J. Tetrahedron Lett. 2008, 49, 6610. (b) Dai, M.; Wang, Z.; Danishefsky, S. J. Tetrahedron Lett.2008, 49, 6613. (c) Kurti, L.; Czako, B.; Corey, E. J. Org.Lett. 2008, 10, 5247. (d) Simmons, E. M.; Hardin, A. R.; Guo, X.; Sarpong, R. Angew. Chem. Int. Ed. 2008, 47, 6650. Angew. Chem. 2008, 120, 6752. (e) Kotoku, N.; Sumii, Y.; Hayashi, T.; Kobayashi, M. Tetrahedron Lett. 2008, 49, 7078. (f) Craft, D. T.; Gung, B. W. Tetrahedron Lett. 2008, 49, 5931. (g) Magnus, P.; Littich, R. Org. Lett. 2009, 11, 3938. (h) Yu, F.; Li, G.; Gao, P.; Gong, H.; Liu, Y.; Wu, Y.; Cheng, B.; Zhai, H.Org. Lett. 2010, 12, 5135. (i) Frie, J. L.; Jeffrey, C. S.; Sorensen, E. J. Org. Lett. 2009, 11, 5394. (j) Baumgartner, C.; Ma, S.; Liu, Q.; Stoltz, B. M. Org. Biomol. Chem.2010, 8, 2915. (k) Liu, L. L.; Chiu, P. Chem. Commun.2011, 47, 3416. (l) Kotoku, N.; Sumii, Y.; Kobayashi, M. Org.Lett. 2011, 13, 3514. (m) Wang, Z.; Dai, M. J.; Park, P. K.; Danishefsky, S. J. Tetrahedron 2011, 67, 10249. (n) Aquino, C.; Greszler, S. N.; Micalizio, G. C. Org. Lett. 2016, 18, 2624.

    7. [7]

      Fu, J.; Gu, Y.; Yuan, H.; Luo, T.; Li, S.; Lan, Y.; Gong, J.; Yang, Z. Nat. Commun. 2015, 6, 8617.

    8. [8]

      For selected reviews, see: (a) Hashmi, A. S. K. Chem. Rev.2007, 107, 3180. (b) Friend, C. M.; Hashmi, A. S. K. Acc. Chem.Res. 2014, 47, 729. (c) Zhang, L. Acc. Chem.Res. 2014, 47, 877. (d) Wang, Y. M.; Lackner, A. D.; Toste, F. D. Acc. Chem. Res. 2014, 47, 889. (e) Dorel, R.; Echavarren, A. M. Chem. Rev. 2015, 115, 9028. (f) Dorel, R.; Echavarren, A. M. J. Org. Chem. 2015, 80, 7321. (g) Hopkinson, M. N.; Tlahuext-Aca, A.; Glorius, F. Acc. Chem.Res. 2016, 49, 2261.

    9. [9]

      (a) Shi, H.; Fang, L.; Tan, C.; Shi, L.; Zhang, W.; Li, C. C.; Luo, T.; Yang, Z. J. Am. Chem. Soc. 2011, 133, 14944. (b) Shan, Z.; Liu, J.; Xu, L.; Tang, Y.; Chen, J.; Yang, Z. Org. Lett. 2012, 14, 3712. (c) Yue, G.; Zhang, Y.; Fang, L.; Li, C.; Luo, T.; Yang, Z. Angew. Chem. Int. Ed. 2014, 53, 1837. Angew. Chem. 2014, 126, 1868. (d) Shi, H.; Tan, C.; Zhang, W.; Zhang, Z.; Long, R.; Luo, T.; Yang, Z. Org. Lett. 2015, 17, 2342.

    10. [10]

      For selected examples, see: (a) Antoniotti, S.; Genin, E.; Michelet, V.; Genêt, J. P. J. Am. Chem. Soc. 2005, 127, 9976. (b) Hashmi, A. S. K.; Bührle, M.; Wçlfle, M.; Rudolph, M.; Wieteck, M.; Rominger, F.; Frey, W. Chem. Eur. J. 2010, 16, 9846. (c) Bihelovic. F.; Saicic, R. N. Angew. Chem. Int.Ed. 2012, 51, 5687. Angew. Chem. 2012, 124, 5785. (d) Noey, E. L.; Luo, Y.; Zhang, L.; Houk, K. N. J. Am. Chem.Soc. 2012, 134, 1078. (e) Zeng, X. Chem. Rev.2013, 113, 6864. (f) Li, D. Y.; Chen, H. J.; Liu, P. N. Angew.Chem. Int. Ed. 2016, 55, 373. Angew. Chem.2016, 128, 381.

    11. [11]

      (a) Barluenga, J.; Diéguez, A.; Fernández, A.; Rodríguez, F.; Fañanás, F. J. Angew. Chem. Int. Ed. 2006, 45, 2091. Angew. Chem. 2006, 118, 2145. (b) Barluenga, J.; Fernández, A.; Diéguez, A.; Rodríguez, F.; Fañanás, F. J. Chem. Eur.J. 2009, 15, 11660. (c) Krauter, C. M.; Hashmi, A. S. K.; Pernpointner, M. ChemCatChem 2010, 2, 1226. (d) Nagaraju, C.; Prasad, K. R. Angew. Chem. Int. Ed. 2014, 53, 10997;Angew. Chem. 2014, 126, 11177.

    12. [12]

      (a) Kirsch, S. F.; Binder, J. T.; Liébert, C.; Menz, H. Angew. Chem. Int. Ed.2006, 45, 5878. Angew. Chem. 2006, 118, 6010. (b) Crone, B.; Kirsch, S. F. Chem. Eur. J. 2008, 14, 3514. (c) Song, Z. L.; Fan, C. A.; Tu, Y. Q. Chem. Rev. 2011, 111, 7523. (d) Zhang, X. M.; Tu, Y. Q.; Zhang, F. M.; Chen, Z. H.; Wang, S. H. Chem. Soc.Rev. 2017, 46, 2272.

    13. [13]

      Gu, Y.; Zhang, P.; Fu, J.; Liu, S.; Lan, Y.; Gong, J.; Yang, Z. Adv. Synth. Catal. 2016, 358, 1392.  doi: 10.1002/adsc.201600218

    14. [14]

      (a) Morrill, C.; Funk, T. W.; Grubbs, R. H. Tetrahedron Lett.2004, 45, 7733. (b) Hemelaere, R.; Carreaux, F.; Carboni, B. J.Org. Chem. 2013, 78, 6786.

    15. [15]

      Keck, G. E.; Yates, J. B. J. Am. Chem. Soc. 1982, 104, 5829.  doi: 10.1021/ja00385a066

    16. [16]

      Kotoku, N.; Sumii, Y.; Hayashi, T.; Kobayashi, M. Heterocycles 2011, 83, 1535.  doi: 10.3987/COM-11-12195

    17. [17]

      The X-ray crystallography data for compound 53, see SI of ref. 7.

    18. [18]

      Marḱo, I. E.; Ates, A.; Gautier, A.; Leroy, B.; Plancher, J. M.; Quesnel, Y.; Vanherck, J. C. Angew. Chem. Int. Ed. 1999, 38, 3207. Angew. Chem. 1999, 111, 3411.

    19. [19]

      Ghosh, N.; Nayak, S.; Prabagar, B.; Sahoo, A. K. J. Org. Chem. 2014, 79, 2453  doi: 10.1021/jo4027319

    20. [20]

      Tan, D. S.; Dudley, G. B.; Danishefsky, S. Angew. Chem.Int. Ed. 2002, 41, 2185. Angew. Chem.2002, 114, 2289..

  • 加载中
    1. [1]

      Wenyu GaoLiming ZhangChuang ZhaoLixiang LiuXingran YangJinbo Zhao . Controlled semi-Pinacol rearrangement on a strained ring: Efficient access to multi-substituted cyclopropanes by group migration strategy. Chinese Chemical Letters, 2024, 35(9): 109447-. doi: 10.1016/j.cclet.2023.109447

    2. [2]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    3. [3]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    4. [4]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    5. [5]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    6. [6]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    7. [7]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    8. [8]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    9. [9]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    10. [10]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    11. [11]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    12. [12]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    13. [13]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    14. [14]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    15. [15]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    16. [16]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    17. [17]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    18. [18]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    19. [19]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    20. [20]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

Metrics
  • PDF Downloads(4)
  • Abstract views(2043)
  • HTML views(168)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return