Citation: Zhong Guoyu, Wang Hongjuan, Yu Hao, Peng Feng. A Review of Carbon-based Non-noble Catalysts for Oxygen Reduction Reaction[J]. Acta Chimica Sinica, ;2017, 75(10): 943-966. doi: 10.6023/A17040183 shu

A Review of Carbon-based Non-noble Catalysts for Oxygen Reduction Reaction

  • Corresponding author: Peng Feng, cefpeng@scut.edu.cn
  • Received Date: 24 April 2017
    Available Online: 4 October 2017

    Fund Project: Project supported by the National Natural Science Foundation of China (Nos. 21373091, 21476089)the National Natural Science Foundation of China 21373091AAA 21476089

Figures(22)

  • Proton exchange membrane fuel cells (PEMFCs) that directly convert chemical energy into electrical energy can be applied to portable power and fuel cell electric vehicles, due to their advantages such as environment-friendliness, high power density and high convert efficiency. However, the high loading of Pt-based catalysts on the cathode oxygen reduction reaction (ORR) hinder the commercial application of PEMFCs for the high price, resource shortage and easy poisoning of Pt. Thus, developing inexpensive, high performance and durability non-noble metal cathode catalysts will promote the large-scale commercialization of PEMFCs. As the most likely alternative to Pt, carbon-based non-noble ORR catalysts have been widely studied. In this review, firstly, the electrocatalytic mechanism for ORR is simply introduced. Secondly, the carbon-based non-noble ORR catalysts are divided into transition metal-nitrogen-carbon compounds (M-N-C) and non-metal heteroatom-doped carbon catalysts; the researches of material preparations and active sites are summarized and discussed. Thirdly, the applications of carbon-based non-noble ORR catalysts in PEMFC are reviewed. Although great progress has been achieved in this area of research and development, there are still some challenges for carbon-based non-noble ORR catalysts. Firstly, the ORR electrocatalytic mechanism isn't clear, especially carbon-based non-noble catalysts. Secondly, the ORR active sites of carbon-based non-noble catalysts remain controversial, which can be mainly divided into the transition metal coordination compounds, the doped heteroatom, the filled metal and the defect sites. Thirdly, the actual activity and stability of carbon-based non-noble catalysts are still below the PEMFC target. In summary, the future research directions on carbon-based non-noble catalysts for PEMFC applications would be proposed as follows:(1) fundamentally understanding the ORR mechanisms and their relationship with catalyst active site structures and composition using both theoretical calculations and experimental approaches; (2) improving catalyst activity and stability to satisfy the practical application of PEMFC.
  • 加载中
    1. [1]

      Wang, Y.; Zhang, L.; Hu, T. Acta Chim. Sinica. 2015, 73, 316.
       

    2. [2]

      Yeager, E. Electrochim. Acta 1984, 29, 1527.  doi: 10.1016/0013-4686(84)85006-9

    3. [3]

      Li, Y.; Zhong, G.; Yu, H.; Wang, H.; Peng, F. Phys. Chem. Chem. Phys. 2015, 17, 21950.  doi: 10.1039/C5CP02167G

    4. [4]

      Chen, X.; Yan, H.; Xia, D. Acta Chim. Sinica 2017, 75, 189.  doi: 10.3969/j.issn.0253-2409.2017.02.008
       

    5. [5]

      Anderson, A. B.; Sidik, R. A. J. Phys. Chem. B 2004, 108, 5031.  doi: 10.1021/jp037184z

    6. [6]

      Bouwkamp-Wijnoltz, A. L.; Visscher, W.; Van Veen, J. A. R. Electrochim. Acta 1998, 43, 3141.  doi: 10.1016/S0013-4686(98)00076-0

    7. [7]

      Anderson, A. B.; Sidik, R. A. J. Phys. Chem. B 2004, 108, 5031.  doi: 10.1021/jp037184z

    8. [8]

      Jaouen, F. J. Phys. Chem. C 2009, 113, 15433.  doi: 10.1021/jp900838x

    9. [9]

      Shao, M., Electrocatalysis in Fuel Cells:A Non-and Low-Platinum Approach, Springer London, London, 2013, p. 698.

    10. [10]

      Wang, Y.; Balbuena, P. B. J. Chem. Theory Comput. 2005, 1, 935.  doi: 10.1021/ct0500794

    11. [11]

      Jasinski, R. Nature 1964, 201, 1212.  doi: 10.1038/2011212a0

    12. [12]

      Randin, J.-P. Electrochim. Acta 1974, 19, 83.  doi: 10.1016/0013-4686(74)85060-7

    13. [13]

      Jahnke, H.; Schönborn, M.; Zimmermann, G. Physical and Chemical Applications of Dyestuffs, Springer, Verlag, 1976, p. 133.

    14. [14]

      Van der Putten, A.; Elzing, A.; Visscher, W.; Barendrecht, E. J. Electroanal. Chem. 1987, 221, 95.  doi: 10.1016/0022-0728(87)80248-6

    15. [15]

      Tarasevich, M.; Radiyschkina, K.; Androuseva, S. Bioelectrochem. Bioenerg. 1977, 4, 18.  doi: 10.1016/0302-4598(77)80002-0

    16. [16]

      Berezin, B. Russ. J. Physic Chem. 1962, 36, 258.

    17. [17]

      Kadish, K. M.; Smith, K. M.; Guilard, R., The Porphyrin Handbook:Inorganic, Organometallic and Coordination Chemistry, Elsevier, London, 2000, p. 15.

    18. [18]

      Jahnke, H. G.; Schonborn, M.; Zimmerman, G. J. Electrochem. Soc. 1974, 121, 120

    19. [19]

      Bagotzky, V. S.; Tarasevich, M. R.; Radyushkina, K. A.; Levina, O. A.; Andrusyova, S. I. J. Power Sources 1978, 2, 233.  doi: 10.1016/0378-7753(78)85014-9

    20. [20]

      Fuhrmann, A.; Wiesener, K.; Iliev, I.; Gamburzev, S.; Kaisheva, A. J. Power Sources 1981, 6, 69.  doi: 10.1016/0378-7753(81)80007-9

    21. [21]

      Shigehara, K.; Anson, F. C. J. Electroanal. Chem. 1982, 132, 107.  doi: 10.1016/0022-0728(82)85010-9

    22. [22]

      Van der Putten, A.; Elzing, A.; Visscher, W.; Barendrecht, E. J. Electroanal. Chem. 1986, 205, 233.  doi: 10.1016/0022-0728(86)90234-2

    23. [23]

      Lalande, G.; Cote, R.; Tamizhmani, G.; Guay, D.; Dodelet, J.; Dignard-Bailey, L.; Weng, L.; Bertrand, P. Electrochim. Acta 1995, 40, 2635.  doi: 10.1016/0013-4686(95)00104-M

    24. [24]

      Charreteur, F.; Jaouen, F.; Dodelet, J. P. Electrochim. Acta 2009, 54, 6622.  doi: 10.1016/j.electacta.2009.06.058

    25. [25]

      Medard, C.; Lefevre, M.; Dodelet, J.; Jaouen, F.; Lindbergh, G. Electrochim. Acta 2006, 51, 3202.  doi: 10.1016/j.electacta.2005.09.012

    26. [26]

      Gupta, S.; Tryk, D.; Bae, I.; Aldred, W.; Yeager, E. J. Appl. Electrochem. 1989, 19, 19.  doi: 10.1007/BF01039385

    27. [27]

      Bouwkamp-Wijnoltz, A.; Visscher, W.; Van Veen, J.; Tang, S. Electrochim. Acta 1999, 45, 379.  doi: 10.1016/S0013-4686(99)00281-9

    28. [28]

      Lefevre, M.; Dodelet, J.; Bertrand, P. J. Phys. Chem. B 2000, 104, 11238.  doi: 10.1021/jp002444n

    29. [29]

      Jaouen, F.; Dodelet, J. P. J. Phys. Chem. C 2007, 111, 5963.  doi: 10.1021/jp068273p

    30. [30]

      Jaouen, F.; Lefèvre, M.; Dodelet, J. P.; Cai, M. J. Phys. Chem. B 2006, 110, 5553.  doi: 10.1021/jp057135h

    31. [31]

      Lefèvre, M.; Proietti, E.; Jaouen, F.; Dodelet, J. P. Science 2009, 324, 71.  doi: 10.1126/science.1170051

    32. [32]

      Wu, G.; More, K. L.; Johnston, C. M.; Zelenay, P. Science 2011, 332, 443.  doi: 10.1126/science.1200832

    33. [33]

      Lai, Y.; Zhou, D. B.; Hu, J. W.; Cui, L. L. Acta Chim. Sinica 2008, 66, 1015.  doi: 10.3321/j.issn:0567-7351.2008.09.002
       

    34. [34]

      Zheng, L.; Tao, K.; Xiong, L.; Ye, D.; Han, K.; Ji, Y. Acta Chim. Sinica 2012, 70, 2342.
       

    35. [35]

      Zhu, Y.; Zhang, B.; Liu, X.; Wang, D. W.; Su, D. S. Angew. Chem., Int. Ed. 2014, 53, 10673.  doi: 10.1002/anie.201405314

    36. [36]

      Jiang, W. J.; Gu, L.; Li, L.; Zhang, Y.; Zhang, X.; Zhang, L. J.; Wang, J. Q.; Hu, J. S.; Wei, Z.; Wan, L. J. J. Am. Chem. Soc. 2016, 138, 3570.  doi: 10.1021/jacs.6b00757

    37. [37]

      Wang, Y. C.; Lai, Y. J.; Song, L.; Zhou, Z. Y.; Liu, J. G.; Wang, Q.; Yang, X. D.; Chen, C.; Shi, W.; Zheng, Y. P.; Rauf, M.; Sun, S. G. Angew. Chem., Int. Ed. 2015, 54, 9907.  doi: 10.1002/anie.201503159

    38. [38]

      Chen, W.; Sin, M.; Wei, P. J.; Zhang, Q. L.; Liu, J. G. Chin. J. Chem. 2016, 34, 878.  doi: 10.1002/cjoc.201600196

    39. [39]

      Sun, T.; Wu, Q.; Zhuo, O.; Jiang, Y.; Bu, Y.; Yang, L.; Wang, X.; Hu, Z. Nanoscale 2016, 8, 8480.  doi: 10.1039/C6NR00760K

    40. [40]

      Zagal, J.; Paez, M.; Tanaka, A. A.; Dos Santos, J. R.; Linkous, C. A. J. Electroanal. Chem. 1992, 339, 13.  doi: 10.1016/0022-0728(92)80442-7

    41. [41]

      Zagal, J.; Cárdenas-Jirón, G. J. Electroanal. Chem. 2000, 489, 96.  doi: 10.1016/S0022-0728(00)00209-6

    42. [42]

      Baker, R.; Wilkinson, D. P.; Zhang, J. Electrochim. Acta 2008, 53, 6906.  doi: 10.1016/j.electacta.2008.01.055

    43. [43]

      Rosa, A.; Baerends, E. Inorg. Chem. 1994, 33, 584.  doi: 10.1021/ic00081a029

    44. [44]

      Bouwkamp-Wijnoltz, A.; Visscher, W.; Van Veen, J.; Boellaard, E.; Van der Kraan, A.; Tang, S. J. Phys. Chem. B 2002, 106, 12993.  doi: 10.1021/jp0266087

    45. [45]

      Van Veen, J.; Colijn, H.; Van Baar, J. Electrochim. Acta 1988, 33, 801.  doi: 10.1016/S0013-4686(98)80010-8

    46. [46]

      Van Wingerden, B.; van Veen, J. R.; Mensch, C. T. J. Chem. Soc., Faraday Trans. 11988, 84, 65.  doi: 10.1039/f19888400065

    47. [47]

      Wiesener, K. Electrochim. Acta 1986, 31, 1073.  doi: 10.1016/0013-4686(86)80022-6

    48. [48]

      Franke, R.; Ohms, D.; Wiesener, K. J. Electroanal. Chem. 1989, 260, 63.  doi: 10.1016/0022-0728(89)87099-8

    49. [49]

      Faubert, G.; Côté, R.; Dodelet, J.; Lefevre, M.; Bertrand, P. Electrochim. Acta 1999, 44, 2589.  doi: 10.1016/S0013-4686(98)00382-X

    50. [50]

      Herranz, J.; Lefevre, M.; Larouche, N.; Stansfield, B.; Dodelet, J. P. J. Phys. Chem. C 2007, 111, 19033.  doi: 10.1021/jp0764438

    51. [51]

      Charreteur, F.; Jaouen, F.; Ruggeri, S.; Dodelet, J. P. Electrochim. Acta 2008, 53, 2925.  doi: 10.1016/j.electacta.2007.11.002

    52. [52]

      Jaouen, F.; Herranz, J.; Lefevre, M.; Dodelet, J. P.; Kramm, U. I.; Herrmann, I.; Bogdanoff, P.; Maruyama, J.; Nagaoka, T.; Garsuch, A.; Dahn, J. R.; Olson, T.; Pylypenko, S.; Atanassov, P.; Ustinov, E. A. ACS Appl. Mater. Interfaces 2009, 1, 1623.  doi: 10.1021/am900219g

    53. [53]

      Yuasa, M.; Yamaguchi, A.; Itsuki, H.; Tanaka, K.; Yamamoto, M.; Oyaizu, K. Chem. Mater. 2005, 17, 4278.  doi: 10.1021/cm050958z

    54. [54]

      Schulenburg, H.; Stankov, S.; Schünemann, V.; Radnik, J.; Dorbandt, I.; Fiechter, S.; Bogdanoff, P.; Tributsch, H. J. Phys. Chem. B 2003, 107, 9034.  doi: 10.1021/jp030349j

    55. [55]

      Lefevre, M.; Dodelet, J.; Bertrand, P. J. Phys. Chem. B 2005, 109, 16718.  doi: 10.1021/jp0529265

    56. [56]

      Maldonado, S.; Stevenson, K. J. J. Phys. Chem. B 2004, 108, 11375.

    57. [57]

      Birry, L.; Zagal, J. H.; Dodelet, J. P. Electrochem. Commun. 2010, 12, 628.  doi: 10.1016/j.elecom.2010.02.016

    58. [58]

      Gara, M.; Compton, R. G. New J. Chem. 2011, 35, 2647.  doi: 10.1039/c1nj20612e

    59. [59]

      Nallathambi, V.; Lee, J. W.; Kumaraguru, S. P.; Wu, G.; Popov, B. N. J. Power Sources 2008, 183, 34.  doi: 10.1016/j.jpowsour.2008.05.020

    60. [60]

      Liu, G.; Li, X.; Popov, B. ECS Trans. 2009, 25, 1251.

    61. [61]

      von Deak, D.; Singh, D.; Biddinger, E. J.; King, J. C.; Bayram, B.; Miller, J. T.; Ozkan, U. S. J. Catal. 2012, 285, 145.  doi: 10.1016/j.jcat.2011.09.027

    62. [62]

      Deng, D.; Yu, L.; Chen, X.; Wang, G.; Jin, L.; Pan, X.; Deng, J.; Sun, G.; Bao, X. Angew. Chem., Int. Ed. 2013, 52, 371.  doi: 10.1002/anie.201204958

    63. [63]

      Zhong, G.; Wang, H.; Yu, H.; Peng, F. J. Power Sources 2015, 286, 495.  doi: 10.1016/j.jpowsour.2015.04.021

    64. [64]

      Hu, Y.; Jensen, J. O.; Zhang, W.; Cleemann, L. N.; Xing, W.; Bjerrum, N. J.; Li, Q. Angew. Chem., Int. Ed. 2014, 53, 3675.  doi: 10.1002/anie.v53.14

    65. [65]

      Jiang, Y.; Yang, L.; Sun, T.; Zhao, J.; Lyu, Z.; Zhuo, O.; Wang, X.; Wu, Q.; Ma, J.; Hu, Z. ACS Catalysis 2015, 5, 6707.  doi: 10.1021/acscatal.5b01835

    66. [66]

      Wu, Q.; Yang, L.; Wang, X.; Hu, Z. Acc. Chem. Res. 2017, 50, 435.  doi: 10.1021/acs.accounts.6b00541

    67. [67]

      Zhong, G.; Wang, H.; Yu, H.; Peng, F. Electrochem. Commun. 2014, 40, 5.  doi: 10.1016/j.elecom.2013.12.017

    68. [68]

      Zhong, G.; Wang, H.; Yu, H.; Wang, H.; Peng, F. Electrochim. Acta 2016, 190, 49.  doi: 10.1016/j.electacta.2015.12.216

    69. [69]

      Huang, S.; Dai, L.; Mau, A. W. J. Phys. Chem. B 1999, 103, 4223.  doi: 10.1021/jp990342v

    70. [70]

      Gong, K.; Du, F.; Xia, Z.; Durstock, M.; Dai, L. Science 2009, 323, 760.  doi: 10.1126/science.1168049

    71. [71]

      Chen, Z.; Higgins, D.; Tao, H.; Hsu, R. S.; Chen, Z. J. Phys. Chem. C 2009, 113, 21008.  doi: 10.1021/jp908067v

    72. [72]

      Chen, Z.; Higgins, D.; Chen, Z. Carbon 2010, 48, 3057.  doi: 10.1016/j.carbon.2010.04.038

    73. [73]

      Geng, D.; Liu, H.; Chen, Y.; Li, R.; Sun, X.; Ye, S.; Knights, S. J. Power Sources 2011, 196, 1795.  doi: 10.1016/j.jpowsour.2010.09.084

    74. [74]

      Alexeyeva, N.; Shulga, E.; Kisand, V.; Kink, I.; Tammeveski, K. J. Electroanal. Chem. 2010, 648, 169.  doi: 10.1016/j.jelechem.2010.07.014

    75. [75]

      Masa, J.; Zhao, A.; Xia, W.; Sun, Z.; Mei, B.; Muhler, M.; Schuhmann, W. Electrochem. Commun. 2013, 34, 113.  doi: 10.1016/j.elecom.2013.05.032

    76. [76]

      Wang, L.; Ambrosi, A.; Pumera, M. Angew. Chem., Int. Ed. 2013, 52, 13818.  doi: 10.1002/anie.201309171

    77. [77]

      Yu, D.; Zhang, Q.; Dai, L. J. Am. Chem. Soc. 2010, 132, 15127.  doi: 10.1021/ja105617z

    78. [78]

      Qu, L.; Liu, Y.; Baek, J. B.; Dai, L. ACS Nano 2010, 4, 1321.  doi: 10.1021/nn901850u

    79. [79]

      Choi, E. K.; Jeon, I. Y.; Bae, S. Y.; Lee, H. J.; Shin, H. S.; Dai, L.; Baek, J. B. Chem. Commun. 2010, 46, 6320.  doi: 10.1039/c0cc00753f

    80. [80]

      Jeon, I. Y.; Yu, D.; Bae, S. Y.; Choi, H. J.; Chang, D. W.; Dai, L.; Baek, J. B. Chem. Mater. 2011, 23, 3987.  doi: 10.1021/cm201542m

    81. [81]

      Shao, Y.; Zhang, S.; Engelhard, M. H.; Li, G.; Shao, G.; Wang, Y.; Liu, J.; Aksay, I. A.; Lin, Y. J. Mater. Chem. 2010, 20, 7491.  doi: 10.1039/c0jm00782j

    82. [82]

      Geng, D.; Chen, Y.; Chen, Y.; Li, Y.; Li, R.; Sun, X.; Ye, S.; Knights, S. Energy Environ. Sci. 2011, 4, 760.  doi: 10.1039/c0ee00326c

    83. [83]

      Sheng, Z. H.; Shao, L.; Chen, J. J.; Bao, W. J.; Wang, F. B.; Xia, X. H. ACS Nano 2011, 5, 4350.  doi: 10.1021/nn103584t

    84. [84]

      Lin, Z.; Waller, G.; Liu, Y.; Liu, M.; Wong, C. P. Adv. Energy Mater. 2012, 2, 884.  doi: 10.1002/aenm.201200038

    85. [85]

      Lai, L.; Potts, J. R.; Zhan, D.; Wang, L.; Poh, C. K.; Tang, C.; Gong, H.; Shen, Z.; Lin, J.; Ruoff, R. S. Energy Environ. Sci. 2012, 5, 7936.  doi: 10.1039/c2ee21802j

    86. [86]

      Xu, Z.; Shen, L.; Wu, Q.; Sun, T.; Xu, Y.; Li, D.; Du, L.; Yang, L.; Wang, X.; Hu, Z. Acta Chim. Sinica 2015, 73, 793.  doi: 10.3866/PKU.WHXB201503021
       

    87. [87]

      Wu, Q.; Yang, L.; Wang, X.; Hu, Z. Acc. Chem. Res. 2017, 50, 435.  doi: 10.1021/acs.accounts.6b00541

    88. [88]

      Liu, R.; Wu, D.; Feng, X.; Mullen, K. Angew. Chem., Int. Ed. 2010, 49, 2565.  doi: 10.1002/anie.v49:14

    89. [89]

      Yang, W.; Fellinger, T. P.; Antonietti, M. J. Am. Chem. Soc. 2011, 133, 206.  doi: 10.1021/ja108039j

    90. [90]

      Ma, G.; Jia, R.; Zhao, J.; Wang, Z.; Song, C.; Jia, S.; Zhu, Z. J. Phys. Chem. C 2011, 115, 25148.  doi: 10.1021/jp208257r

    91. [91]

      Zhou, X.; Yang, Z.; Nie, H.; Yao, Z.; Zhang, L.; Huang, S. J. Power Sources 2011, 196, 9970.  doi: 10.1016/j.jpowsour.2011.08.029

    92. [92]

      Sidik, R. A.; Anderson, A. B.; Subramanian, N. P.; Kumaraguru, S. P.; Popov, B. N. J. Phys. Chem. B 2006, 110, 1787.  doi: 10.1021/jp055150g

    93. [93]

      Zhao, A.; Masa, J.; Muhler, M.; Schuhmann, W.; Xia, W. Electrochim. Acta 2013, 98, 139.  doi: 10.1016/j.electacta.2013.03.043

    94. [94]

      Yang, L.; Jiang, S.; Zhao, Y.; Zhu, L.; Chen, S.; Wang, X.; Wu, Q.; Ma, J.; Ma, Y.; Hu, Z. Angew. Chem., Int. Ed. 2011, 50, 7132.  doi: 10.1002/anie.v50.31

    95. [95]

      Sheng, Z. H.; Gao, H. L.; Bao, W. J.; Wang, F. B.; Xia, X. H. J. Mater. Chem. 2012, 22, 390.  doi: 10.1039/C1JM14694G

    96. [96]

      Liu, Z. W.; Peng, F.; Wang, H. J.; Yu, H.; Zheng, W. X.; Yang, J. Angew. Chem., Int. Ed. 2011, 50, 3257.  doi: 10.1002/anie.201006768

    97. [97]

      Liu, Z.; Peng, F.; Wang, H.; Yu, H.; Zheng, W.; Wei, X. J. Nat. Gas. Chem. 2012, 21, 257.  doi: 10.1016/S1003-9953(11)60362-9

    98. [98]

      Liu, Z.; Peng, F.; Wang, H.; Yu, H.; Tan, J.; Zhu, L. Catal. Commun. 2011, 16, 35.  doi: 10.1016/j.catcom.2011.08.038

    99. [99]

      Yang, S.; Zhi, L.; Tang, K.; Feng, X.; Maier, J.; Mullen, K. Adv. Funct. Mater. 2012, 22, 3634.  doi: 10.1002/adfm.v22.17

    100. [100]

      Yang, Z.; Yao, Z.; Li, G.; Fang, G.; Nie, H.; Liu, Z.; Zhou, X.; Chen, X. a.; Huang, S. ACS Nano 2011, 6, 205.
       

    101. [101]

      Poh, H. L.; Šimek, P.; Sofer, Z. k.; Pumera, M. ACS Nano 2013, 7, 5262.  doi: 10.1021/nn401296b

    102. [102]

      Wang, L.; Feng, R.; Xia, J.; Chen, S.; Wu, Q.; Yang, L.; Wang, X.; Hu, Z. Acta Chim. Sinica 2014, 72, 1070.
       

    103. [103]

      Jin, Z.; Nie, H.; Yang, Z.; Zhang, J.; Liu, Z.; Xu, X.; Huang, S. Nanoscale 2012, 4, 6455.  doi: 10.1039/c2nr31858j

    104. [104]

      Liu, Z.; Fu, X.; Li, M.; Wang, F.; Wang, Q.; Kang, G.; Peng, F. J. Mater. Chem. A 2015, 3, 3289.  doi: 10.1039/C4TA05937A

    105. [105]

      Sun, X.; Zhang, Y.; Song, P.; Pan, J.; Zhuang, L.; Xu, W.; Xing, W. ACS Catalysis 2013, 3, 1726.  doi: 10.1021/cs400374k

    106. [106]

      Wang, S.; Iyyamperumal, E.; Roy, A.; Xue, Y.; Yu, D.; Dai, L. Angew. Chem., Int. Ed. 2011, 50, 11756.  doi: 10.1002/anie.201105204

    107. [107]

      Yu, D.; Xue, Y.; Dai, L. J. Phys. Chem. Lett. 2012, 3, 2863.  doi: 10.1021/jz3011833

    108. [108]

      Zhao, Y.; Yang, L.; Chen, S.; Wang, X.; Ma, Y.; Wu, Q.; Jiang, Y.; Qian, W.; Hu, Z. J. Am. Chem. Soc. 2013, 135, 1201.  doi: 10.1021/ja310566z

    109. [109]

      Zheng, Y.; Jiao, Y.; Ge, L.; Jaroniec, M.; Qiao, S. Z. Angew. Chem., Int. Ed. 2013, 52, 3110.  doi: 10.1002/anie.201209548

    110. [110]

      Choi, C. H.; Park, S. H.; Woo, S. I. J. Mater. Chem. 2012, 22, 12107.  doi: 10.1039/c2jm31079a

    111. [111]

      Shi, Q.; Peng, F.; Liao, S.; Wang, H.; Yu, H.; Liu, Z.; Zhang, B.; Su, D. J. Mater. Chem. A 2013, 1, 14853.  doi: 10.1039/c3ta12647a

    112. [112]

      Terrones, M.; Ajayan, P. M.; Banhart, F.; Blase, X.; Carroll, D. L.; Charlier, J. C.; Czerw, R.; Foley, B.; Grobert, N.; Kamalakaran, R.; Kohler-Redlich, P.; Rühle, M.; Seeger, T.; Terrones, H. Appl. Phys. A 2002, 74, 355.
       

    113. [113]

      Zhang, G.; Duan, W.; Gu, B. Appl. Phys. Lett. 2002, 80, 2589.  doi: 10.1063/1.1469213

    114. [114]

      Ismagilov, Z. R.; Shalagina, A. E.; Podyacheva, O. Y.; Ischenko, A. V.; Kibis, L. S.; Boronin, A. I.; Chesalov, Y. A.; Kochubey, D. I.; Romanenko, A. I.; Anikeeva, O. B.; Buryakov, T. I.; Tkachev, E. N. Carbon 2009, 47, 1922.  doi: 10.1016/j.carbon.2009.02.034

    115. [115]

      Wiggins-Camacho, J. D.; Stevenson, K. J. J. Phys. Chem. C 2009, 113, 19082.  doi: 10.1021/jp907160v

    116. [116]

      Wiggins-Camacho, J. D.; Stevenson, K. J. J. Phys. Chem. C 2011, 115, 20002.  doi: 10.1021/jp205336w

    117. [117]

      Kundu, S.; Nagaiah, T. C.; Xia, W.; Wang, Y.; Dommele, S. V.; Bitter, J. H.; Santa, M.; Grundmeier, G.; Bron, M.; Schuhmann, W.; Muhler, M. J. Phys. Chem. C 2009, 113, 14302.  doi: 10.1021/jp811320d

    118. [118]

      Rao, C. V.; Cabrera, C. R.; Ishikawa, Y. J. Phys. Chem. Lett. 2010, 1, 2622.  doi: 10.1021/jz100971v

    119. [119]

      Yasuda, S.; Yu, L.; Kim, J.; Murakoshi, K. Chem. Commun. 2013, 49, 9627.  doi: 10.1039/c3cc45641b

    120. [120]

      Sharifi, T.; Hu, G.; Jia, X.; Wågberg, T. ACS Nano 2012, 6, 8904.  doi: 10.1021/nn302906r

    121. [121]

      Casanovas, J.; Ricart, J. M.; Rubio, J.; Illas, F.; Jiménez-Mateos, J. M. J. Am. Chem. Soc. 1996, 118, 8071.  doi: 10.1021/ja960338m

    122. [122]

      Ding, W.; Wei, Z.; Chen, S.; Qi, X.; Yang, T.; Hu, J.; Wang, D.; Wan, L. J.; Alvi, S. F.; Li, L. Angew. Chem., Int. Ed. 2013, 125, 11971  doi: 10.1002/ange.v125.45

    123. [123]

      Chen, Z.; Higgins, D.; Chen, Z. Electrochim. Acta 2010, 55, 4799.  doi: 10.1016/j.electacta.2010.03.057

    124. [124]

      Wong, W. Y.; Daud, W. R. W.; Mohamad, A. B.; Kadhum, A. A. H.; Loh, K. S.; Majlan, E. H. Int. J. Hydrogen Energy 2013, 38, 9370.  doi: 10.1016/j.ijhydene.2012.12.095

    125. [125]

      Xu, X.; Jiang, S.; Hu, Z.; Liu, S. ACS Nano 2010, 4, 4292.  doi: 10.1021/nn1010057

    126. [126]

      Hummers, Jr, W. S.; Offeman, R. E. J. Am. Chem. Soc. 1958, 80, 1339.  doi: 10.1021/ja01539a017

    127. [127]

      Li, Y.; Zhou, W.; Wang, H.; Xie, L.; Liang, Y.; Wei, F.; Idrobo, J. C.; Pennycook, S. J.; Dai, H. Nat. Nanotechnol. 2012, 7, 394.  doi: 10.1038/nnano.2012.72

    128. [128]

      Chen, S.; Bi, J.; Zhao, Y.; Yang, L.; Zhang, C.; Ma, Y.; Wu, Q.; Wang, X.; Hu, Z. Adv. Mater. 2012, 24, 5593.  doi: 10.1002/adma.201202424

    129. [129]

      Shao, M.; Chang, Q.; Dodelet, J. P.; Chenitz, R. Chem. Rev. 2016, 116, 3594  doi: 10.1021/acs.chemrev.5b00462

    130. [130]

      Jaouen, F., Non-Noble Metal Fuel Cell Catalysts, Wiley-VCH Verlag GmbH & Co. KGaA, 2014, p. 29.

    131. [131]

      Higgins, D. C.; Chen, Z. Canad. J. Chem. Eng. 2013, 91, 1881.  doi: 10.1002/cjce.v91.12

    132. [132]

      Debe, M. K. Nature 2012, 486, 43.  doi: 10.1038/nature11115

    133. [133]

      Larouche, N.; Chenitz, R.; Lefèvre, M.; Proietti, E.; Dodelet, J. Electrochim. Acta 2014, 115, 170.  doi: 10.1016/j.electacta.2013.10.102

    134. [134]

      Wang, J.; Li, S.; Zhu, G.; Zhao, W.; Chen, R.; Pan, M. J. Power Sources 2013, 240, 381.  doi: 10.1016/j.jpowsour.2013.03.189

    135. [135]

      Chokai, M.; Daidou, T.; Nabae, Y. ECS Trans. 2014, 64, 261.
       

    136. [136]

      Iwazaki, T.; Obinata, R.; Sugimoto, W.; Takasu, Y. Electrochem. Commun. 2009, 11, 376.  doi: 10.1016/j.elecom.2008.11.045

    137. [137]

      Serov, A.; Artyushkova, K.; Atanassov, P. Adv. Energy Mater. 2014, 4, 1301735.  doi: 10.1002/aenm.201301735

    138. [138]

      Nabae, Y.; Kuang, Y.; Chokai, M.; Ichihara, T.; Isoda, A.; Hayakawa, T.; Aoki, T. J. Mater. Chem. A 2014, 2, 11561.  doi: 10.1039/C4TA01828A

    139. [139]

      Liu, G.; Li, X.; Ganesan, P.; Popov, B. N. Electrochim. Acta 2010, 55, 2853.  doi: 10.1016/j.electacta.2009.12.055

    140. [140]

      Shui, J.; Wang, M.; Du, F.; Dai, L. Sci. Adv. 2015, 1, e1400129  doi: 10.1126/sciadv.1400129

    141. [141]

      Yang, L.; Larouche, N.; Chenitz, R.; Zhang, G.; Lefèvre, M.; Dodelet, J. P. Electrochim. Acta 2015, 159, 184.  doi: 10.1016/j.electacta.2015.01.201

    142. [142]

      Ohma, A.; Shinohara, K.; Iiyama, A.; Yoshida, T.; Daimaru, A. ECS Trans. 2011, 41, 775.

    143. [143]

      Reiser, C. A.; Bregoli, L.; Patterson, T. W.; Yi, J. S.; Yang, J. D.; Perry, M. L.; Jarvi, T. D. Electrochem. Solid State Lett. 2005, 8, A273.  doi: 10.1149/1.1896466

    144. [144]

      Kramm, U. I.; Lefèvre, M.; Bogdanoff, P.; Schmeißer, D.; Dodelet, J. P. J. Phys. Chem. Lett. 2014, 5, 3750.  doi: 10.1021/jz501955g

    145. [145]

      Zhao, D.; Shui, J. L.; Chen, C.; Chen, X.; Reprogle, B. M.; Wang, D.; Liu, D. J. Chem. Sci. 2012, 3, 3200.  doi: 10.1039/c2sc20657a

    146. [146]

      Peng, H.; Mo, Z.; Liao, S.; Liang, H.; Yang, L.; Luo, F.; Song, H.; Zhong, Y.; Zhang, B. Sci. Rep. 2013, 3, 1765.  doi: 10.1038/srep01765

    147. [147]

      Cheon, J. Y.; Kim, T.; Choi, Y.; Jeong, H. Y.; Kim, M. G.; Sa, Y. J.; Kim, J.; Lee, Z.; Yang, T. H.; Kwon, K.; Terasaki, O.; Park, G. G.; Adzic, R. R.; Joo, S. H. Sci. Rep. 2013, 3, 2715.  doi: 10.1038/srep02715

    148. [148]

      Shui, J.; Chen, C.; Grabstanowicz, L.; Zhao, D.; Liu, D. J. Proc. Natl. Acad. Sci. U. S. A. 2015, 112, 10629.  doi: 10.1073/pnas.1507159112

    149. [149]

      Jaouen, F.; Lefèvre, M.; Dodelet, J. P.; Cai, M. J. Phys. Chem. B 2006, 110, 5553.  doi: 10.1021/jp057135h

    150. [150]

      Kramm, U. I.; Lefèvre, M.; Larouche, N.; Schmeisser, D.; Dodelet, J. P. J. Am. Chem. Soc. 2014, 136, 978.  doi: 10.1021/ja410076f

    151. [151]

      Proietti, E.; Jaouen, F.; Lefèvre, M.; Larouche, N.; Tian, J.; Herranz, J.; Dodelet, J. P. Nat. Commun. 2010, 2, 109.

    152. [152]

      Subramanian, N. P.; Li, X.; Nallathambi, V.; Kumaraguru, S. P.; Colon-Mercado, H.; Wu, G.; Lee, J. W.; Popov, B. N. J. Power Sources 2009, 188, 38.  doi: 10.1016/j.jpowsour.2008.11.087

    153. [153]

      Choi, C. H.; Lim, H. K.; Chung, M. W.; Park, J. C.; Shin, H.; Kim, H.; Woo, S. I. J. Am. Chem. Soc. 2014, 136, 9070.  doi: 10.1021/ja5033474

    154. [154]

      Banham, D.; Ye, S.; Pei, K.; Ozaki, J. i.; Kishimoto, T.; Imashiro, Y. J. Power Sources 2015, 285, 334.  doi: 10.1016/j.jpowsour.2015.03.047

    155. [155]

      Wu, G.; Artyushkova, K.; Ferrandon, M.; Kropf, A. J.; Myers, D.; Zelenay, P. ECS Trans. 2009, 25, 1299.
       

    156. [156]

      Meyers, J. P.; Darling, R. M. J. Electrochem. Soc. 2006, 153, A1432.  doi: 10.1149/1.2203811

    157. [157]

      Biloul, A.; Gouérec, P.; Savy, M.; Scarbeck, G.; Besse, S.; Riga, J. J. Appl. Electrochem. 1996, 26, 1139.
       

    158. [158]

      Mamtani, K.; Ozkan, U. S. Catal. Lett. 2015, 145, 436.  doi: 10.1007/s10562-014-1434-y

    159. [159]

      Singh, D.; Tian, J.; Mamtani, K.; King, J.; Miller, J. T.; Ozkan, U. S. J. Catal. 2014, 317, 30.  doi: 10.1016/j.jcat.2014.05.025

    160. [160]

      Fenton, H. J. H. J. Chem. Soc. Trans. 1894, 65, 899.  doi: 10.1039/CT8946500899

    161. [161]

      Gubler, L.; Dockheer, S. M.; Koppenol, W. H. J. Electrochem. Soc. 2011, 158, B755.  doi: 10.1149/1.3581040

    162. [162]

      Dodelet, J. P., N4-Macrocyclic Metal Complexes, Springer New York, New York, NY, 2006, p. 83.

    163. [163]

      Liu, G.; Li, X.; Lee, J. W.; Popov, B. N. Catal. Sci. Technol. 2011, 1, 207.  doi: 10.1039/c0cy00053a

    164. [164]

      Kramm, U. I.; Herranz, J.; Larouche, N.; Arruda, T. M.; Lefevre, M.; Jaouen, F.; Bogdanoff, P.; Fiechter, S.; Abs-Wurmbach, I.; Mukerjee, S.; Dodelet, J. P. Phys. Chem. Chem. Phys. 2012, 14, 11673.  doi: 10.1039/c2cp41957b

  • 加载中
    1. [1]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    2. [2]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    3. [3]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    4. [4]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    5. [5]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    6. [6]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    7. [7]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    8. [8]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    9. [9]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    10. [10]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    11. [11]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    12. [12]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    13. [13]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    14. [14]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    15. [15]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    16. [16]

      Rui PANYuting MENGRuigang XIEDaixiang CHENJiefa SHENShenghu YANJianwu LIUYue ZHANG . Selective electrocatalytic reduction of Sn(Ⅳ) by carbon nitrogen materials prepared with different precursors. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1015-1024. doi: 10.11862/CJIC.20230433

    17. [17]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    18. [18]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    19. [19]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    20. [20]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

Metrics
  • PDF Downloads(159)
  • Abstract views(10316)
  • HTML views(2027)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return