Citation: Li Jiapeng, Yin Jianhao, Yu Chao, Zhang Wenxiong, Xi Zhenfeng. Direct Transformation of N2 to N-Containing Organic Compounds[J]. Acta Chimica Sinica, ;2017, 75(8): 733-743. doi: 10.6023/A17040170 shu

Direct Transformation of N2 to N-Containing Organic Compounds

  • Corresponding author: Xi Zhenfeng, zfxi@pku.edu.cn
  • Received Date: 20 April 2017
    Available Online: 12 August 2017

    Fund Project: Project supported by the National Natural Science Foundation of China (No.21690061)the National Natural Science Foundation of China 21690061

Figures(30)

  • As a grand research area closely related to human civilization and living, the activation and transformation of dinitrogen (nitrogen fixation) under mild conditions used to be a central research theme worldwide in the 1970's~1990's. Nitrogen fixation is the process by which atmospheric nitrogen is directly converted to a bioavailable form. This basic chemical reaction process is essential to sustaining all life on this planet. However, due to great challenging of the nature of this research, slow progress and worldwide change of academic culture, the number of researchers engaged in this fundamental research area has been drastically reduced. Nevertheless, there is no doubt that realizing activation and transformation of dinitrogen under mild conditions is a grand scientific problem that people need to solve, required by sustainable development of human society. It is thus one of the most important missions of scientists, especially chemists. Three types of N-containing products can be obtained through direct transformation of dinitrogen. The most popular one is the formation of ammonia NH3 and NxHy. The industrial Haber-Bosch process, which requires harsh reaction conditions such as high temperature and pressure and uses at least 1%~2% of the annual primary energy supply in the world, is still the main method to produce ammonia from molecular dinitrogen and dihydrogen gases. Inspired by the investigation of nitrogenase and the discovery of the first molecular nitrogen complex in 1965, chemists have paid more attention to achieving the reduction of dinitrogen to ammonia with transition metal complexes either as regents or as catalysts. Reports on the other two types of products, the N-E (E=P, Si) bonding compounds, and the N-C bonding compounds, are very rare. Compared with ammonia, nitrogen-containing organic compounds such as amines, amides, imides, amino acids and aza-heterocycles are also high-value products. This review mainly summarizes the progress in the field of direct transformation of molecular nitrogen to nitrogen-containing organic compounds by using transition metal complexes, as well as the elucidation of transformation mechanisms. The N-containing organic compounds thus formed include amines, amides, imides, nitriles, diazenes, azines, carbodiimides, isocyanates and heterocycles. Although some progress has been achieved, examples are still very much limited, efficiency is generally very low. Transition metal complex-catalyzed reaction process is in great demand. Synergetic strategy is considered to be one of the efficient ways to realize transition metal complex-catalyzed direct transformation of molecular nitrogen to nitrogen-containing organic compounds under mild conditions. The formation of N-E (E=P, Si) bonding compounds and the reduction of dinitrogen to ammonia and other partially reduced or protonated products of dinitrogen are not covered here.
  • 加载中
    1. [1]

      Allen, A. D.; Senoff, C. V. Chem. Commun. 1965, 621.

    2. [2]

    3. [3]

      (a) Chatt, J.; Dilworth, J. R.; Richards, R. L. Chem. Rev. 1978, 78, 589. (b) Hidai, M.; Mizobe, Y. Chem. Rev. 1995, 95, 1115. (c) Hidai, M. Coord. Chem. Rev. 1999, 185, 99. (d) Fryzuk, M. D.; Johnson, S. A. Coord. Chem. Rev. 2000, 200, 379. (e) Shaver, M. P.; Fryzuk, M. D. Adv. Synth. Catal. 2003, 345, 1061. (f) Fryzuk, M. D. Chem. Rec. 2003, 3, 2. (g) MacKay, B. A.; Fryzuk, M. D. Chem. Rev. 2004, 104, 385. (h) Crossland, J. L.; Tyler, D. R. Coord. Chem. Rev. 2010, 254, 1883. (i) Hazari, N. Chem. Soc. Rev. 2010, 39, 4044. (j) Tanabe, Y.; Nishibayashi, Y. Coord. Chem. Rev. 2013, 257, 2551. (k) van der Ham, C. J. M.; Koper, M. T. M.; Hetterscheid, D. G. H. Chem. Soc. Rev. 2014, 43, 5183. (l) Lehnert, N.; Peters, J. C. Inorg. Chem. 2015, 54, 9229. (m) Walter, M. D. Adv. Organomet. Chem. 2016, 65, 261. (n) Bhattacharya, P.; Prokopchuk, D. E.; Mock, M. T. Coord. Chem. Rev. 2017, 334, 67. (o) Burford, R. J.; Yeo, A.; Fryzuk, M. D. Coord. Chem. Rev. 2017, 334, 84.

    4. [4]

      Howard, J. B.; Rees, D. C. Chem. Rev. 1996, 96, 2965.  doi: 10.1021/cr9500545

    5. [5]

      Einsle, O.; Tezcan, F. A.; Andrade, S. L. A.; Schmid, B.; Yoshida, M.; Howard, J. B.; Rees, D. C. Science 2002, 297, 1696.  doi: 10.1126/science.1073877

    6. [6]

      Spatzal, T.; Aksoyoglu, M.; Zhang, L.; Andrade, S. L. A.; Schleicher, E.; Weber, S.; Rees, D. C.; Einsle, O. Science 2011, 334, 940.  doi: 10.1126/science.1214025

    7. [7]

      Lancaster, K. M.; Roemelt, M.; Ettenhuber, P.; Hu, Y.; Ribbe, M. W.; Neese, F.; Bergmann, U.; DeBeer, S. Science 2011, 334, 974.  doi: 10.1126/science.1206445

    8. [8]

      Lancaster, K. M.; Hu, Y.; Bergmann, U.; Ribbe, M. W.; DeBeer, S. J. Am. Chem. Soc. 2013, 135, 610.  doi: 10.1021/ja309254g

    9. [9]

      Wiig, J. A.; Hu, Y.; Lee, C. C.; Ribbe, M. W. Science 2012, 337, 1672.

    10. [10]

      (a) Chen, Y.; Liu, L.; Peng, Y.; Chen, P.; Luo, Y.; Qu, J. J. Am. Chem. Soc. 2011, 133, 1147. (b) Luo, Y.; Li, Y.; Yu, H.; Zhao, J.; Chen, Y.; Hou, Z.; Qu, J. Organometallics 2012, 31, 335. (c) Li, Y.; Li, Y.; Wang, B.; Luo, Y.; Yang, D.; Tong, P.; Zhao, J.; Luo, L.; Zhou, Y.; Chen, S.; Cheng, F.; Qu, J. Nat. Chem. 2013, 5, 320. (d) Ouyang, Z.; Cheng, J.; Li, L.; Bao, X.; Deng, L. Chem. Eur. J. 2016, 22, 14162.

    11. [11]

      (a) Shima, T.; Hu, S.; Luo, G.; Kang, X.; Luo, Y.; Hou, Z. Science 2013, 340, 1549. (b) MacLeod, K. C.; Vinyard, D. J.; Holland, P. L. J. Am. Chem. Soc. 2014, 136, 10226. (c) Rittle, J.; McCrory, C. C. L.; Peters, J. C. J. Am. Chem. Soc. 2014, 136, 13853. (d) Ishida, Y.; Kawaguchi, H. J. Am. Chem. Soc. 2014, 136, 16990. (e) Lee, Y.; Sloane, F. T.; Blondin, G.; Abboud, K. A.; García-Serres, R.; Murray, L. J. Angew. Chem. Int. Ed. 2015, 54, 1499. (f) Pappas, I.; Chirik, P. J. J. Am. Chem. Soc. 2015, 137, 3498.

    12. [12]

      Nishibayashi, Y. Inorg. Chem. 2015, 54, 9234.  doi: 10.1021/acs.inorgchem.5b00881

    13. [13]

      Khoenkhoen, N.; de Bruin, B.; Reek, J. N. H.; Dzik, W. I. Eur. J. Inorg. Chem. 2015, 2015, 567.

    14. [14]

      Yandulov, D. V.; Schrock, R. R. Science 2003, 301, 76.

    15. [15]

      Arashiba, K.; Miyake, Y.; Nishibayashi, Y. Nat. Chem. 2011, 3, 120.  doi: 10.1038/nchem.906

    16. [16]

      Anderson, J. S.; Rittle, J.; Peters, J. C. Nature 2013, 501, 84.  doi: 10.1038/nature12435

    17. [17]

    18. [18]

      Shiina, K. J. J. Am. Chem. Soc. 1972, 94, 9266.  doi: 10.1021/ja00781a068

    19. [19]

      Komori, K.; Oshita, H.; Mizobe, Y.; Hidai, M. J. Am. Chem. Soc. 1989, 111, 1939.  doi: 10.1021/ja00187a092

    20. [20]

      Tanaka, H.; Sasada, A.; Kouno, T.; Yuki, M.; Miyake, Y.; Nakanishi, H.; Nishibayashi, Y.; Yoshizawa, K. J. Am. Chem. Soc. 2011, 133, 3498.  doi: 10.1021/ja109181n

    21. [21]

      Yuki, M.; Tanaka, H.; Sasaki, K.; Miyake, Y.; Yoshizawa, K.; Nishibayashi, Y. Nat. Commun. 2012, 3, 1254.  doi: 10.1038/ncomms2264

    22. [22]

      Imayoshi, R.; Tanaka, H.; Matsuo, Y.; Yuki, M.; Nakajima, K.; Yoshizawa, K.; Nishibayashi, Y. Chem. Eur. J. 2015, 21, 8905.  doi: 10.1002/chem.201501088

    23. [23]

      Morello, L.; Yu, P.; Carmichael, C. D.; Patrick, B. O.; Fryzuk, M. D. J. Am. Chem. Soc. 2005, 127, 12796.  doi: 10.1021/ja054467r

    24. [24]

      MacLeod, K. C.; Holland, P. L. Nat. Chem. 2013, 5, 559.  doi: 10.1038/nchem.1620

    25. [25]

      Volpin, M. E.; Shur, V. B.; Kudryavtsev, R. V.; Prodayko, L. A. Chem. Commun. 1968, 1038.

    26. [26]

      van Tamelen, E. E.; Rudler, H. J. Am. Chem. Soc. 1970, 92, 5253.  doi: 10.1021/ja00720a061

    27. [27]

      Hori, K.; Mori, M. J. Am. Chem. Soc. 1998, 120, 7651.  doi: 10.1021/ja981465g

    28. [28]

      Mori, M.; Uozumi, Y.; Shibasaki, M. Tetrahedron Lett. 1987, 28, 6187.  doi: 10.1016/S0040-4039(00)61842-7

    29. [29]

      Ueda, K.; Sato, Y.; Mori, M. J. Am. Chem. Soc. 2000, 122, 10722.  doi: 10.1021/ja002707r

    30. [30]

      Knobloch, D. J.; Lobkovsky, E.; Chirik, P. J. Nat. Chem. 2010, 2, 30.  doi: 10.1038/nchem.477

    31. [31]

      Curley, J. J.; Sceats, E. L.; Cummins, C. C. J. Am. Chem. Soc. 2006, 128, 14036.  doi: 10.1021/ja066090a

    32. [32]

      Guru, M. M.; Shima, T.; Hou, Z. Angew. Chem. Int. Ed. 2016, 55, 12316.  doi: 10.1002/anie.201607426

    33. [33]

      Semproni, S. P.; Margulieux, G. W.; Chirik, P. J. Organometallics 2012, 31, 6278.  doi: 10.1021/om3005542

    34. [34]

      Klopsch, I.; Kinauer, M.; Finger, M.; Würtele, C.; Schneider, S. Angew. Chem. Int. Ed. 2016, 55, 4786.  doi: 10.1002/anie.201600790

    35. [35]

      Sellmann, D.; Weiss, W. Angew. Chem. Int. Ed. 1978, 17, 269.  doi: 10.1002/(ISSN)1521-3773

    36. [36]

      Watakabe, A.; Takahashi, T.; Jin, D. M.; Yokotake, I.; Uchida, Y.; Hidai, M. J. Organomet. Chem. 1983, 254, 75.  doi: 10.1016/0022-328X(83)85119-5

    37. [37]

      Bernskoetter, W. H.; Lobkovsky, E.; Chirik, P. J. Angew. Chem. Int. Ed. 2007, 46, 2858.  doi: 10.1002/(ISSN)1521-3773

    38. [38]

      Knobloch, D. J.; Toomey, H. E.; Chirik, P. J. J. Am. Chem. Soc. 2008, 130, 4248.  doi: 10.1021/ja8008506

    39. [39]

      Semproni, S. P.; Chirik, P. J. J. Am. Chem. Soc. 2013, 135, 11373.  doi: 10.1021/ja405477m

    40. [40]

      Keane, A. J.; Farrell, W. S.; Yonke, B. L.; Zavalij, P. Y.; Sita, L. R. Angew. Chem. Int. Ed. 2015, 54, 10220.  doi: 10.1002/anie.201502293

    41. [41]

      Seino, H.; Ishii, Y.; Sasagawa, T.; Hidai, M. J. Am. Chem. Soc. 1995, 117, 12181.  doi: 10.1021/ja00154a019

    42. [42]

      Hori, M.; Mori, M. J. Org. Chem. 1995, 60, 1480.  doi: 10.1021/jo00111a001

    43. [43]

      Amarnath, V.; Anthony, D. C.; Amarnath, K.; Valentine, W. M.; Wetterau, L. A.; Graham, D. G. J. Org. Chem. 1991, 56, 6924.  doi: 10.1021/jo00024a040

    44. [44]

      Mori, M.; Hori, K.; Akashi, M.; Hori, M.; Sato, Y.; Nishida, M. Angew. Chem. Int. Ed. 1998, 37, 636.  doi: 10.1002/(ISSN)1521-3773

    45. [45]

      Pickett, C. J.; Leigh, G. J. Chem. Commun. 1981, 1033.

  • 加载中
    1. [1]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    2. [2]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    3. [3]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    4. [4]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    5. [5]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    6. [6]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    7. [7]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    8. [8]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    9. [9]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    10. [10]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    11. [11]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    12. [12]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    13. [13]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    14. [14]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    15. [15]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    16. [16]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    17. [17]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    18. [18]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    19. [19]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    20. [20]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

Metrics
  • PDF Downloads(102)
  • Abstract views(4795)
  • HTML views(1372)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return