Citation: Zhang Yongling, Wang Min, Cao Peng, Liao Jian. Copper-Catalyzed Enantioselective Aminoboration of Styrenes with Chiral Sulfoxide Phosphine Ligand[J]. Acta Chimica Sinica, ;2017, 75(8): 794-797. doi: 10.6023/A17040144 shu

Copper-Catalyzed Enantioselective Aminoboration of Styrenes with Chiral Sulfoxide Phosphine Ligand

  • Corresponding author: Liao Jian, jliao@cib.ac.cn
  • Received Date: 12 April 2017
    Available Online: 9 August 2017

    Fund Project: Project supported by the National Natural Science Foundation of China (Nos.21472184, 21572218 and 21402186)the National Natural Science Foundation of China 21402186the National Natural Science Foundation of China 21472184the National Natural Science Foundation of China 21572218

Figures(1)

  • To date, copper catalysis has become an attractive approach to access multifunctional alkylborons through borylative coupling processes, many important protocols such as carboboration, stannylboration and aminoboration were developed. Among these methods, however, there is no report involving enantioselective aminoboration of simple styrene substrates, which can generate a class of useful chiral compounds. In this work, an enantioselective Cu-catalyzed aminoboration of styrenes by using a chiral sulfoxide-phosphine (SOP) ligand was developed, chiral β-aminoalkylboranes were obtained in satisfied yields and ee values, and these products can be readily converted to a class of valuable β-hydroxylalkylamines. A general procedure for the aminoboration of styrenes is as following:in glove box, CuCl (0.02 mmol), chiral sulfoxide phosphine L1 (0.022 mmol) and 2.0 mL of dried tetrahydrofuran were added into a flame-dried tube, the resolved solution was stirred for 30 min at room temperature, then bis(pinacolato)diboron (B2pin2) (0.3 mmol), t-BuOLi (0.6 mmol) and styrene (0.2 mmol) were added. The tube was taken out of the glove box and cooled to 0℃. Electrophilic amination reagent, O-benzoyl-N, N-dibenzylhydroxylamine (2a, 0.3 mmol), was dissolved in 1.0 mL of ethyl acetate and added to the mixture, the resolved mixture was stirred at 0℃ for 24 h. The crude product was filtered through a celite pad, concentrated and oxidized by NaBO3·4H2O. The mixture was extracted three times with ethyl acetate, concentrated and purified with silica gel chromatography to give the desired β-hydroxylalkylamines, the enantioselective excess of products were determined by chiral HPLC analysis. Broad substrate scope which related to steric and electronic effect were compatible in this catalysis under the standard conditions. To demonstrate the utility of this method, a gram scale experiment was performed and the desired product was obtained in 92% isolated yield and 90% ee. The benzyl group of products can be readily removed via a Pd/C-catalyzed hydrogenation process and the corresponding product with a free amino group in excellent yield (95%).
  • 加载中
    1. [1]

      (a) Pelter, A.; Smith, K.; Brown, H. C. Borane Reagents, Academic Press, London, 1988; (b) Miyaura, N.; Suzuki, A. Chem. Rev.1995, 95, 2457; (c) Davison, M.; Hughes, A. K.; Marder, T. B.; Wade, K. Contemporary Boron Chemistry, RSC, Cambridge, U. K., 2000; (d) Boronic Acids, 2nd ed.; Ed.: Hall, D. G., Wiley-VCH, Weinheim, Germany, 2011.

    2. [2]

      (a) Ishiyama, T.; Matsuda, N.; Miyaura, N.; Suzuki, A. J. Am.Chem. Soc. 1993, 115, 11018; (b) Ishiyama, T.; Matsuda, N.; Murata, M.; Ozawa, F.; Suzuki, A.; Miyaura, N. Organometallics 1996, 15, 713; (c) Lesley, G.; Nguyen, P.; Taylor, N. J.; Marder, T. B. Organometallics 1996, 15, 5137; (d) Ishiyama, T.; Yamamoto, M.; Miyaura, N. Chem.Commun. 1996, 2073; (e) Ishiyama, T.; Yamamoto, M.; Miyaura, N. Chem.Commun. 1997, 689; (f) Thomas, R. L.; Souza, F. E. S.; Marder, T. B. J. Chem. Soc., Dalton Trans. 2001, 1650; (g) Yang, F.-Y.; Cheng, C.-H. J. Am. Chem. Soc. 2001, 123, 761; (h) Burks, H. E.; Kliman, L. T.; Morken, J. P. J. Am.Chem. Soc. 2009, 131, 9134; (i) Kliman, L. T.; Mlynarski, S. N.; Morken, J. P. J. Am. Chem. Soc. 2009, 131, 13210; (j) Iwadate, N.; Suginome, M. J. Am. Chem. Soc. 2010, 132, 2548; (k) Coombs, J. R.; Haeffner, F.; Kliman, L. T.; Morken, J. P. J. Am. Chem. Soc. 2013, 135, 11222; (l) Coombs, J. R.; Zhang, L.; Morken, J. P. J. Am.Chem. Soc. 2014, 136, 16140; For review, see: Ishiyama, T.; Ishida, K.; Miyaura, N. Tetrahedron 2001, 57, 9813 and references therein.

    3. [3]

    4. [4]

      Selected examples, see: (a) Adams, C. J.; Baber, R. A.; Batsanov, A. S.; Bramham, G.; Charmant, J. P.; Haddow, M. F.; Howard, J. A.; Lam, W. H.; Lin, Z.; Marder, T. B.; Norman, N. C.; Orpen, A. G. Dalton Trans. 2006, 1370; (b) Obligacion, J. V.; Chirik, P. J. Org. Lett.2013, 15, 2680; (c) Obligacion, J. V.; Chirik, P. J. J. Am.Chem. Soc. 2013, 135, 19107. (d) Zhang, L.; Peng, D.; Leng, X.; Huang, Z. Angew. Chem., Int. Ed. 2013, 52, 3676; (e) Cao, Y.; Zhang, Y.; Zhang, L.; Zhang, D.; Leng, X.; Huang, Z. Org. Chem. Front.2014, 1, 1101; (f) Chen, J.; Xi, T.; Lu, Z.Org. Lett. 2014, 16, 6452; (g) Chen, J.; Xi, T.; Ren, X.; Cheng, B.; Guo, J.; Lu, Z. Org. Chem. Front. 2014, 1, 1306; (h) Zhang, L.; Zuo, Z.; Leng, X.; Huang, Z. Angew. Chem., Int. Ed. 2014, 53, 2696; (i) Zhang, L.; Zuo, Z.; Wan, X.; Huang, Z. J. Am. Chem. Soc. 2014, 136, 15501; (j) Guo, J.; Chen, J.; Lu, Z. Chem. Commun. 2015, 51, 5725; (k) Zhang, L.; Huang, Z. J. Am. Chem. Soc. 2015, 137, 15600; (l) Zhang, H.; Lu, Z. ACS Catal. 2016, 6, 6596; (m) Zuo, Z.; Huang, Z. Org. Chem. Front. 2016, 3, 434; (n) Zuo, Z.; Yang, J.; Huang, Z. Angew. Chem., Int.Ed. 2016, 55, 10839; (o) Xi, T.; Lu, Z. ACS Catal. 2017, 7, 1181.

    5. [5]

      (a) Suginome, M.; Matsuda, T.; Yoshimoto, T.; Ito, Y. Org. Lett.1999, 1, 1567; (b) Suginome, M.; Shirakura, M.; Yamamoto, A. J.Am. Chem. Soc. 2006, 128, 14438; (c) Ely, R. J.; Morken, J. P. J. Am. Chem. Soc. 2010, 132, 2534.

    6. [6]

    7. [7]

      (a) Bloch, R. Chem. Rev. 1998, 98, 1407; (b) Ramadhar, T. R.; Batey, R. A. Synthesis 2011, 1321; (c) Yus, M.; González-Gómez, J. C.; Foubelo, F. Chem. Rev. 2013, 113, 5595.

    8. [8]

      (a) Matsuda, N.; Hirano, K.; Satoh, T.; Miura, M. J. Am.Chem. Soc. 2013, 135, 4934; (b) Sakae, R.; Matsuda, N.; Hirano, K.; Satoh, T.; Miura, M. Org. Lett. 2014, 16, 1228; (c) Parra, A.; Amenos, L.; Guisan-Ceinos, M.; Lopez, A.; Garcia Ruano, J. L.; Tortosa, M. J. Am. Chem. Soc. 2014, 136, 15833; (d) Sakae, R.; Hirano, K.; Miura, M. J. Am. Chem. Soc.2015, 137, 6460; (e) Sakae, R.; Hirano, K.; Satoh, T.; Miura, M. Angew.Chem., Int. Ed. 2015, 54, 613; (f) Kato, K.; Hirano, K.; Miura, M. Angew. Chem., Int. Ed. 2016, 55, 14400; (g) Nishikawa, D.; Hirano, K.; Miura, M. Org. Lett.2016, 18, 4856; (h) Shi, M. Chem. Commun. 2016, 52, 5273.

    9. [9]

      (a) Chen, B.; Cao, P.; Yin, X.; Liao, Y.; Jiang, L.; Ye, J.; Wang, M.; Liao, J. ACS Catal. 2017, 7, 2425; (b) Jia, T.; Cao, P.; Wang, B.; Lou, Y.; Yin, X.; Wang, M.; Liao, J. J. Am.Chem. Soc. 2015, 137, 13760; (c) Jia, T.; Cao, P.; Wang, D.; Lou, Y.; Liao, J. Chem. Eur. J.2015, 21, 4918.

    10. [10]

      Metro, T. X.; Appenzeller, J.; Pardo, D. G.; Cossy, J. Org. Lett. 2006, 8, 3509.  doi: 10.1021/ol061133d

  • 加载中
    1. [1]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    2. [2]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    3. [3]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    4. [4]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    5. [5]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    6. [6]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    7. [7]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    8. [8]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

    9. [9]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    10. [10]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    11. [11]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    12. [12]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    13. [13]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    14. [14]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    15. [15]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    16. [16]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    17. [17]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    18. [18]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    19. [19]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    20. [20]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

Metrics
  • PDF Downloads(15)
  • Abstract views(1249)
  • HTML views(171)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return