Citation: Zhang Yongling, Wang Min, Cao Peng, Liao Jian. Copper-Catalyzed Enantioselective Aminoboration of Styrenes with Chiral Sulfoxide Phosphine Ligand[J]. Acta Chimica Sinica, ;2017, 75(8): 794-797. doi: 10.6023/A17040144 shu

Copper-Catalyzed Enantioselective Aminoboration of Styrenes with Chiral Sulfoxide Phosphine Ligand

  • Corresponding author: Liao Jian, jliao@cib.ac.cn
  • Received Date: 12 April 2017
    Available Online: 9 August 2017

    Fund Project: Project supported by the National Natural Science Foundation of China (Nos.21472184, 21572218 and 21402186)the National Natural Science Foundation of China 21402186the National Natural Science Foundation of China 21472184the National Natural Science Foundation of China 21572218

Figures(1)

  • To date, copper catalysis has become an attractive approach to access multifunctional alkylborons through borylative coupling processes, many important protocols such as carboboration, stannylboration and aminoboration were developed. Among these methods, however, there is no report involving enantioselective aminoboration of simple styrene substrates, which can generate a class of useful chiral compounds. In this work, an enantioselective Cu-catalyzed aminoboration of styrenes by using a chiral sulfoxide-phosphine (SOP) ligand was developed, chiral β-aminoalkylboranes were obtained in satisfied yields and ee values, and these products can be readily converted to a class of valuable β-hydroxylalkylamines. A general procedure for the aminoboration of styrenes is as following:in glove box, CuCl (0.02 mmol), chiral sulfoxide phosphine L1 (0.022 mmol) and 2.0 mL of dried tetrahydrofuran were added into a flame-dried tube, the resolved solution was stirred for 30 min at room temperature, then bis(pinacolato)diboron (B2pin2) (0.3 mmol), t-BuOLi (0.6 mmol) and styrene (0.2 mmol) were added. The tube was taken out of the glove box and cooled to 0℃. Electrophilic amination reagent, O-benzoyl-N, N-dibenzylhydroxylamine (2a, 0.3 mmol), was dissolved in 1.0 mL of ethyl acetate and added to the mixture, the resolved mixture was stirred at 0℃ for 24 h. The crude product was filtered through a celite pad, concentrated and oxidized by NaBO3·4H2O. The mixture was extracted three times with ethyl acetate, concentrated and purified with silica gel chromatography to give the desired β-hydroxylalkylamines, the enantioselective excess of products were determined by chiral HPLC analysis. Broad substrate scope which related to steric and electronic effect were compatible in this catalysis under the standard conditions. To demonstrate the utility of this method, a gram scale experiment was performed and the desired product was obtained in 92% isolated yield and 90% ee. The benzyl group of products can be readily removed via a Pd/C-catalyzed hydrogenation process and the corresponding product with a free amino group in excellent yield (95%).
  • 加载中
    1. [1]

      (a) Pelter, A.; Smith, K.; Brown, H. C. Borane Reagents, Academic Press, London, 1988; (b) Miyaura, N.; Suzuki, A. Chem. Rev.1995, 95, 2457; (c) Davison, M.; Hughes, A. K.; Marder, T. B.; Wade, K. Contemporary Boron Chemistry, RSC, Cambridge, U. K., 2000; (d) Boronic Acids, 2nd ed.; Ed.: Hall, D. G., Wiley-VCH, Weinheim, Germany, 2011.

    2. [2]

      (a) Ishiyama, T.; Matsuda, N.; Miyaura, N.; Suzuki, A. J. Am.Chem. Soc. 1993, 115, 11018; (b) Ishiyama, T.; Matsuda, N.; Murata, M.; Ozawa, F.; Suzuki, A.; Miyaura, N. Organometallics 1996, 15, 713; (c) Lesley, G.; Nguyen, P.; Taylor, N. J.; Marder, T. B. Organometallics 1996, 15, 5137; (d) Ishiyama, T.; Yamamoto, M.; Miyaura, N. Chem.Commun. 1996, 2073; (e) Ishiyama, T.; Yamamoto, M.; Miyaura, N. Chem.Commun. 1997, 689; (f) Thomas, R. L.; Souza, F. E. S.; Marder, T. B. J. Chem. Soc., Dalton Trans. 2001, 1650; (g) Yang, F.-Y.; Cheng, C.-H. J. Am. Chem. Soc. 2001, 123, 761; (h) Burks, H. E.; Kliman, L. T.; Morken, J. P. J. Am.Chem. Soc. 2009, 131, 9134; (i) Kliman, L. T.; Mlynarski, S. N.; Morken, J. P. J. Am. Chem. Soc. 2009, 131, 13210; (j) Iwadate, N.; Suginome, M. J. Am. Chem. Soc. 2010, 132, 2548; (k) Coombs, J. R.; Haeffner, F.; Kliman, L. T.; Morken, J. P. J. Am. Chem. Soc. 2013, 135, 11222; (l) Coombs, J. R.; Zhang, L.; Morken, J. P. J. Am.Chem. Soc. 2014, 136, 16140; For review, see: Ishiyama, T.; Ishida, K.; Miyaura, N. Tetrahedron 2001, 57, 9813 and references therein.

    3. [3]

    4. [4]

      Selected examples, see: (a) Adams, C. J.; Baber, R. A.; Batsanov, A. S.; Bramham, G.; Charmant, J. P.; Haddow, M. F.; Howard, J. A.; Lam, W. H.; Lin, Z.; Marder, T. B.; Norman, N. C.; Orpen, A. G. Dalton Trans. 2006, 1370; (b) Obligacion, J. V.; Chirik, P. J. Org. Lett.2013, 15, 2680; (c) Obligacion, J. V.; Chirik, P. J. J. Am.Chem. Soc. 2013, 135, 19107. (d) Zhang, L.; Peng, D.; Leng, X.; Huang, Z. Angew. Chem., Int. Ed. 2013, 52, 3676; (e) Cao, Y.; Zhang, Y.; Zhang, L.; Zhang, D.; Leng, X.; Huang, Z. Org. Chem. Front.2014, 1, 1101; (f) Chen, J.; Xi, T.; Lu, Z.Org. Lett. 2014, 16, 6452; (g) Chen, J.; Xi, T.; Ren, X.; Cheng, B.; Guo, J.; Lu, Z. Org. Chem. Front. 2014, 1, 1306; (h) Zhang, L.; Zuo, Z.; Leng, X.; Huang, Z. Angew. Chem., Int. Ed. 2014, 53, 2696; (i) Zhang, L.; Zuo, Z.; Wan, X.; Huang, Z. J. Am. Chem. Soc. 2014, 136, 15501; (j) Guo, J.; Chen, J.; Lu, Z. Chem. Commun. 2015, 51, 5725; (k) Zhang, L.; Huang, Z. J. Am. Chem. Soc. 2015, 137, 15600; (l) Zhang, H.; Lu, Z. ACS Catal. 2016, 6, 6596; (m) Zuo, Z.; Huang, Z. Org. Chem. Front. 2016, 3, 434; (n) Zuo, Z.; Yang, J.; Huang, Z. Angew. Chem., Int.Ed. 2016, 55, 10839; (o) Xi, T.; Lu, Z. ACS Catal. 2017, 7, 1181.

    5. [5]

      (a) Suginome, M.; Matsuda, T.; Yoshimoto, T.; Ito, Y. Org. Lett.1999, 1, 1567; (b) Suginome, M.; Shirakura, M.; Yamamoto, A. J.Am. Chem. Soc. 2006, 128, 14438; (c) Ely, R. J.; Morken, J. P. J. Am. Chem. Soc. 2010, 132, 2534.

    6. [6]

    7. [7]

      (a) Bloch, R. Chem. Rev. 1998, 98, 1407; (b) Ramadhar, T. R.; Batey, R. A. Synthesis 2011, 1321; (c) Yus, M.; González-Gómez, J. C.; Foubelo, F. Chem. Rev. 2013, 113, 5595.

    8. [8]

      (a) Matsuda, N.; Hirano, K.; Satoh, T.; Miura, M. J. Am.Chem. Soc. 2013, 135, 4934; (b) Sakae, R.; Matsuda, N.; Hirano, K.; Satoh, T.; Miura, M. Org. Lett. 2014, 16, 1228; (c) Parra, A.; Amenos, L.; Guisan-Ceinos, M.; Lopez, A.; Garcia Ruano, J. L.; Tortosa, M. J. Am. Chem. Soc. 2014, 136, 15833; (d) Sakae, R.; Hirano, K.; Miura, M. J. Am. Chem. Soc.2015, 137, 6460; (e) Sakae, R.; Hirano, K.; Satoh, T.; Miura, M. Angew.Chem., Int. Ed. 2015, 54, 613; (f) Kato, K.; Hirano, K.; Miura, M. Angew. Chem., Int. Ed. 2016, 55, 14400; (g) Nishikawa, D.; Hirano, K.; Miura, M. Org. Lett.2016, 18, 4856; (h) Shi, M. Chem. Commun. 2016, 52, 5273.

    9. [9]

      (a) Chen, B.; Cao, P.; Yin, X.; Liao, Y.; Jiang, L.; Ye, J.; Wang, M.; Liao, J. ACS Catal. 2017, 7, 2425; (b) Jia, T.; Cao, P.; Wang, B.; Lou, Y.; Yin, X.; Wang, M.; Liao, J. J. Am.Chem. Soc. 2015, 137, 13760; (c) Jia, T.; Cao, P.; Wang, D.; Lou, Y.; Liao, J. Chem. Eur. J.2015, 21, 4918.

    10. [10]

      Metro, T. X.; Appenzeller, J.; Pardo, D. G.; Cossy, J. Org. Lett. 2006, 8, 3509.  doi: 10.1021/ol061133d

  • 加载中
    1. [1]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    2. [2]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . Kinetic Resolution Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene EZ Isomerization: A Comprehensive Chemistry Experiment for Undergraduate Students. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    3. [3]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    4. [4]

      Haiying Wang Andrew C.-H. Sue . How to Visually Identify Homochiral Crystals. University Chemistry, 2024, 39(3): 78-85. doi: 10.3866/PKU.DXHX202309004

    5. [5]

      Keying Qu Jie Li Ziqiu Lai Kai Chen . Unveiling the Mystery of Chirality from Tartaric Acid. University Chemistry, 2024, 39(9): 369-378. doi: 10.12461/PKU.DXHX202310091

    6. [6]

      Tingyu Zhu Hui Zhang Wenwei Zhang . Exploration and Practice of Ideological and Political Education in the Course of Experiments on Chemical Functional Molecules: Synthesis and Catalytic Performance Study of Chiral Mn(III)Cl-Salen Complex. University Chemistry, 2024, 39(4): 75-80. doi: 10.3866/PKU.DXHX202311011

    7. [7]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    8. [8]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

    9. [9]

      Conghao Shi Ranran Wang Juli Jiang Leyong Wang . The Illustration on Stereoisomers of Macrocycles Containing Multiple Chiral Centers via Tröger Base-based Macrocycles. University Chemistry, 2024, 39(7): 394-397. doi: 10.3866/PKU.DXHX202311034

    10. [10]

      Chengqian Mao Yanghan Chen Haotong Bai Junru Huang Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, 2024, 39(5): 354-362. doi: 10.3866/PKU.DXHX202312014

    11. [11]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    12. [12]

      Qin Hou Jiayi Hou Aiju Shi Xingliang Xu Yuanhong Zhang Yijing Li Juying Hou Yanfang Wang . Preparation of Cuprous Iodide Coordination Polymer and Fluorescent Detection of Nitrite: A Comprehensive Chemical Design Experiment. University Chemistry, 2024, 39(8): 221-229. doi: 10.3866/PKU.DXHX202312056

    13. [13]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    14. [14]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    15. [15]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    16. [16]

      Shuang Yang Qun Wang Caiqin Miao Ziqi Geng Xinran Li Yang Li Xiaohong Wu . Ideological and Political Education Design for Research-Oriented Experimental Course of Highly Efficient Hydrogen Production from Water Electrolysis in Aerospace Perspective. University Chemistry, 2024, 39(11): 269-277. doi: 10.12461/PKU.DXHX202403044

    17. [17]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    18. [18]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    19. [19]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    20. [20]

      Xiuyun Wang Jiashuo Cheng Yiming Wang Haoyu Wu Yan Su Yuzhuo Gao Xiaoyu Liu Mingyu Zhao Chunyan Wang Miao Cui Wenfeng Jiang . Improvement of Sodium Ferric Ethylenediaminetetraacetate (NaFeEDTA) Iron Supplement Preparation Experiment. University Chemistry, 2024, 39(2): 340-346. doi: 10.3866/PKU.DXHX202308067

Metrics
  • PDF Downloads(16)
  • Abstract views(1326)
  • HTML views(178)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return