Citation: Zhang Luwen, Wen Zhiguo, Borzov Maxim, Nie Wanli. Research of B(C6F5)3/Aromatic Ammonium Chloride Systems Catalyzed Hydroamination/Reduction Reaction[J]. Acta Chimica Sinica, ;2017, 75(8): 819-823. doi: 10.6023/A17040142 shu

Research of B(C6F5)3/Aromatic Ammonium Chloride Systems Catalyzed Hydroamination/Reduction Reaction

  • Corresponding author: Nie Wanli, niewl126@126.com
  • Received Date: 6 April 2017
    Available Online: 23 August 2017

    Fund Project: Project supported by the National Natural Science Foundation of China (No.21542011) and Scientific Research Fund of Leshan Normal University (Nos.Z1414, Z1308)the National Natural Science Foundation of China 21542011Scientific Research Fund of Leshan Normal University Z1308Scientific Research Fund of Leshan Normal University Z1414

Figures(4)

  • Although in recent years the frustrated Lewis pairs (FLPs) reactivity towards small molecule activation has been widely concerned, the reports on the FLPs derived from aromatic amines are few. This paper describes a new method of an one-pot hydroamination/reduction reaction of terminal alkynes with aromatic amines catalyzed by the B(C6F5)3/aromatic ammonium chloride systems with a hydridosilane as a source of the hydride. We consider that the active intermediate[Ar2NH2]+[H-B(C6F5)3]-which formed by the aromatic ammonium chloride/B(C6F5)3 reaction with silanes plays a very important role on the formation and reduction of the mediate product imines. The hydroamination reaction is firstly induced by the trace amount amines produced by the dissociation of the borohydride aromatic amine salt, which then reacts with the alkynes and forms the imines. Then the borohydride intermediate[Ar2NH2]+[H-B(C6F5)3]- reduces the imines to amines. It has been proved that the borohydride intermediate[Ar2NH2]+[H-B(C6F5)3]-could successfully reduce the corresponding imines to amines in an in-situ reaction condition. However it has been found that the usually most active mono-substituted hydridosilane, such as PhSiH3 shows the poorest reactivity in this case. And the less active trisubstituted silanes such as Et3SiH or Ph3SiH exhibit the highest reactivity. To explain this abnormal phenomenon the different reaction speeds of the cascade hydroamination/reduction reaction and the dissociation of the borohydride aromatic amine salt should be concerned. Since the dissociation of[Ar2NH2]+[H-B(C6F5)3]-to H2 is comparably quicker than the hydroamination reaction. By reacting with the less active trisubstituted silanes could not only slow down the formation and dissociation of[Ar2NH2]+[H-B(C6F5)3]-, but could also let the hydroamination and reduction steps proceeded completely. Moreover by slowly adding the diluted hydrosilanes to the reaction systems could also improve the reaction. The reaction yield is affected by the substituent on the terminal alkynes, too. The alkynes with the electron withdrawn group show comparably higher reactivity than with the electron donating ones.
  • 加载中
    1. [1]

      Müller, T. E.; Hultzsch, K. C.; Yus, M.; Foubelo, F.; Tada, M. Chem. Rev. 2008, 108, 3795.  doi: 10.1021/cr0306788

    2. [2]

      Severin, R.; Doye, S. Chem. Soc. Rev. 2007, 36, 1407.  doi: 10.1039/b600981f

    3. [3]

      Nishina, N.; Yamamoto, Y. Top. Organomet. Chem. 2013, 43, 115.

    4. [4]

      (a) Sun, Q.; Wang, Y.-R.; Yuan, D.; Yao, Y.-M.; Shen, Q. Organometallics 2014, 33, 994. (b) Liang, S.-Z.; Hammond, L.; Xu, B.; Hammond, G. B. Adv. Synth. Catal. 2016, 358(20), 3313. (c) Sakai, N.; Takahashi, N.; Ogiwara, Y. Eur. J. Org. Chem. 2014, 5078.

    5. [5]

      Wang, J.; Cui, D.-M. Chin. J. Org. Chem. 2016, 36(6), 1163
       

    6. [6]

      Bian, R.-J.; Bao, X.-G. Chin. J. Org. Chem. 2017, 37(1), 190
       

    7. [7]

      McCahill, J. S. J.; Welch, G. C.; Stephan, D. W. Angew. Chem., Int. Ed. 2007, 46, 4968.  doi: 10.1002/(ISSN)1521-3773

    8. [8]

      Dureen, M. A.; Brown, C. C.; Stephan, D. W. Organometallics 2010, 29, 6594.  doi: 10.1021/om1009044

    9. [9]

      Sajid, M.; Elmer, L.-M.; Rosorius, C.; Daniliuc, C. G.; Grimme, S.; Kehr, G.; Erker, G. Angew. Chem., Int. Ed. 2013, 52, 2243.  doi: 10.1002/anie.201208750

    10. [10]

      Mçmming, C. M.; Otten, E.; Kehr, G.; Frçhlich, R.; Grimme, S.; Stephan, D. W.; Erker, G. Angew. Chem., Int. Ed. 2009, 48, 6643.  doi: 10.1002/anie.v48:36

    11. [11]

      Cardenas, A. J. P.; Culotta, B. J.; Warren, T. H.; Grimme, S.; Stute, A.; Froehlich, R.; Kehr, G.; Erker, G. Angew. Chem., Int. Ed. 2011, 50, 7567.  doi: 10.1002/anie.201101622

    12. [12]

      Otten, E.; Neu, R. C.; Stephan, D. W. J. Am. Chem. Soc. 2009, 131, 9918.  doi: 10.1021/ja904377v

    13. [13]

      Sajid, M.; Klose, A.; Birkmann, B.; Liang, L.; Schirmer, B.; Wiegand, T.; Eckert, H.; Lough, A. J.; Froehlich, R.; Daniliuc, C. G.; Grimme, S.; Stephan, D. W.; Kehr, G.; Erker, G. Chem. Sci. 2013, 4, 213.  doi: 10.1039/C2SC21161K

    14. [14]

      Mahdi, T.; Stephan, D. W. Angew. Chem., Int. Ed. 2013, 52, 12418.  doi: 10.1002/anie.201307254

    15. [15]

      Mahdi, T.; Stephan, D. W. Chem. Eur. J. 2015, 21, 11134.  doi: 10.1002/chem.v21.31

    16. [16]

      Wen, Z.-G.; Tian, C.; Borzov, M.; Nie, W.-L. Acta Chim. Sinica 2016, 74, 498.
       

    17. [17]

      Hu, X.; Tian, C.; Borzov, M.; Nie, W.-L. Acta Chim. Sinica 2015, 73, 1025.  doi: 10.3866/PKU.WHXB201504141
       

    18. [18]

      Nie, W.-L.; Sun, G.-F.; Tian, C.; Borzov, M. V. Z. Naturforsch. 2016, 71(10) b, 1029.

    19. [19]

      Tian, C.; Jiang, Y.; Borzov, M.; Nie, W.-L. Acta Chim. Sinica 2015, 73, 1203.
       

    20. [20]

      Li, L.; Huang, G.; Chen, Z.; Liu, W.; Wang, X.; Chen, Y.; Yang, L.; Li, W.; Li, Y. Eur. J. Org. Chem. 2012, 28, 5564.

  • 加载中
    1. [1]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    2. [2]

      Haiping Wang . A Streamlined Method for Drawing Lewis Structures Using the Valence State of Outer Atoms. University Chemistry, 2024, 39(8): 383-388. doi: 10.12461/PKU.DXHX202401073

    3. [3]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    4. [4]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    5. [5]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    6. [6]

      Xiuyun Wang Jiashuo Cheng Yiming Wang Haoyu Wu Yan Su Yuzhuo Gao Xiaoyu Liu Mingyu Zhao Chunyan Wang Miao Cui Wenfeng Jiang . Improvement of Sodium Ferric Ethylenediaminetetraacetate (NaFeEDTA) Iron Supplement Preparation Experiment. University Chemistry, 2024, 39(2): 340-346. doi: 10.3866/PKU.DXHX202308067

    7. [7]

      Yongpo Zhang Xinfeng Li Yafei Song Mengyao Sun Congcong Yin Chunyan Gao Jinzhong Zhao . Synthesis of Chlorine-Bridged Binuclear Cu(I) Complexes Based on Conjugation-Driven Cu(II) Oxidized Secondary Amines. University Chemistry, 2024, 39(5): 44-51. doi: 10.3866/PKU.DXHX202309092

    8. [8]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    9. [9]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    10. [10]

      Jianjun LIMingjie RENLili ZHANGLingling ZENGHuiling WANGXiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187

    11. [11]

      Xiaofeng Xia Jielian Zhu . Innovative Comprehensive Experimental Design: Synthesis of 6-Fluoro-N-benzoyl Tetrahydroquinoline. University Chemistry, 2024, 39(10): 344-352. doi: 10.12461/PKU.DXHX202405063

    12. [12]

      Tingbo Wang Yao Luo Bingyan Hu Ruiyuan Liu Jing Miao Huizhe Lu . Quantitative Computational Study on the Claisen Rearrangement Reaction of Allyl Phenyl Ethers: An Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(11): 278-285. doi: 10.12461/PKU.DXHX202403082

    13. [13]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    14. [14]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    15. [15]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    16. [16]

      Tong Zhou Jun Li Zitian Wen Yitian Chen Hailing Li Zhonghong Gao Wenyun Wang Fang Liu Qing Feng Zhen Li Jinyi Yang Min Liu Wei Qi . Experiment Improvement of “Redox Reaction and Electrode Potential” Based on the New Medical Concept. University Chemistry, 2024, 39(8): 276-281. doi: 10.3866/PKU.DXHX202401005

    17. [17]

      Ji-Quan Liu Huilin Guo Ying Yang Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031

    18. [18]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    19. [19]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    20. [20]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

Metrics
  • PDF Downloads(6)
  • Abstract views(1478)
  • HTML views(405)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return