Citation: Sun Guofeng, Su Min, Fang Jie, Borzov Maxim, Nie Wanli. Research of the Stereoselectivity and Mechanism of the Hydroboration Reaction Between B(C6F5)3/Ammonium Chloride Systems with Terminal Alkyne[J]. Acta Chimica Sinica, ;2017, 75(8): 824-830. doi: 10.6023/A17040141 shu

Research of the Stereoselectivity and Mechanism of the Hydroboration Reaction Between B(C6F5)3/Ammonium Chloride Systems with Terminal Alkyne

  • Received Date: 6 April 2017
    Available Online: 23 August 2017

    Fund Project: Scientific Research Fund of Sichuan Educational Department and Leshan Technology Division 15ZB0256Project supported by the National Natural Science Foundation of China (No.21542011), Scientific Research Fund of Sichuan Educational Department and Leshan Technology Division (Nos.15ZB0256, Z14GZ010)Scientific Research Fund of Sichuan Educational Department and Leshan Technology Division Z14GZ010the National Natural Science Foundation of China 21542011

Figures(6)

  • Stereoselective hydroboration reaction of alkynes has been considered as one of the most important organic reaction. To date a handful of metal-catalyzed systems have been demonstrated to achieve trans-hydroboration of alkynes. This paper describes the first non-metal-catalyzed systems which could stereoselectively hydroborate the terminal alkynes in a trans-configuration. The Lewis acid B(C6F5)3 and ammonium chloride have been used as the reaction substrates, and phenylsilane as the hydride source. The hydroboration reaction could be performed in a one-pot procedure by mixing of B(C6F5)3, ammonium chloride and silane together in an equivalent amount. But this one-pot reaction is not so nice since there is always mixed with the ammonium hydroborate[R2NH2]+[H-B(C6F5)3]- intermediates products. A series of ammonium hydroborates prepared from the corresponding primary, secondary, tertiary and quaternary amine hydrochlorides have been isolated, and used in the directly hydroboration with terminal alkynes. To our surprise the ammonium hydroborate[R2NH2]+[H-B(C6F5)3]- could not react with the alkynes alone. When using[R2NH2]+[H-B(C6F5)3]- to react with alkynes, trace amount of catalytic Lewis acid B(C6F5)3 is necessary to firstly activate the carbon-carbon triple bonds and form the crucial zwitterionic σ-complexes. The mechanism study has shown that different from the typical Lewis acid/Lewis base FLPs system reacted with alkynes, in this B(C6F5)3/ammonium chloride system the ammonium chloride plays an important role on the stereoselective control of the reaction. The week interaction between the Cl ion and B(C6F5)3 in the σ-complexes has not only slowed down the unfavorite 1, 1-carboboration reaction, but also stabilized the σ-complexes which has offer the chance for the nucleophilic reagent to attack the reaction center in a cis-or trans-mode. In our experiment the bulky ion[H-B(C6F5)3]-could only attach the active alkynes from the trans-side and form the Z-hydroboration product. This work demonstrates that the combination of the ammonium halides with the Lewis acid B(C6F5)3 could act as a novel "frustrated Lewis pair" to activate alkynes, and will enable the development of even more sophisticated FLP and related catalyzed reactions.
  • 加载中
    1. [1]

      Kropp, M. A.; Baillargeon, M.; Park, K. M.; Ahamidapaty, K.; Schuster, G. B. J. Am. Chem. Soc. 1991, 113, 2155.  doi: 10.1021/ja00006a038

    2. [2]

      Ohmura, T.; Yamamoto, Y.; Miyaura, N. J. Am. Chem. Soc. 2000, 122, 4990.  doi: 10.1021/ja0002823

    3. [3]

      Gunanathan, C.; Hoelscher, M.; Pan, F.; Leitner, W. J. Am. Chem. Soc. 2012, 134, 14349.  doi: 10.1021/ja307233p

    4. [4]

      Obligacion, J. V.; Neely, J. M.; Yazdani, A. N.; Pappas, I.; Chirik, P. J. J. Am. Chem. Soc. 2015, 137, 5855.  doi: 10.1021/jacs.5b00936

    5. [5]

    6. [6]

      Xu, S.-M.; Zhang, Y.-Z.; Li, B.; Liu, S. H.-Y. J. Am. Chem. Soc. 2016, 138(44), 14566.  doi: 10.1021/jacs.6b09759

    7. [7]

    8. [8]

      Bismuto, A.; Thomas, S. P.; Cowley, M. J. Angew. Chem., Int. Ed. 2016, 55, 15356.  doi: 10.1002/anie.v55.49

    9. [9]

      Welch, G. C.; San Juan, R. R.; Masuda, J. D.; Stephan, D. W. Science 2006, 314, 1124.  doi: 10.1126/science.1134230

    10. [10]

      Welch, G. C.; Stephan, D. W. J. Am. Chem. Soc. 2007, 129, 1880.  doi: 10.1021/ja067961j

    11. [11]

      Chen, D.-J.; Wang, Y.; Klankermayer, J. Angew. Chem., Int. Ed. 2010, 49, 9475.  doi: 10.1002/anie.201004525

    12. [12]

      Stephan, D. W.; Erker, G. Angew. Chem., Int. Ed. 2010, 49, 46.  doi: 10.1002/anie.200903708

    13. [13]

      Stephan, D. W. Acc. Chem. Res. 2015, 48, 306.  doi: 10.1021/ar500375j

    14. [14]

      Chen, C.; Kehr, G..; Fröhlich, R.; Erker, G. J. Am. Chem. Soc. 2010, 132, 13594.  doi: 10.1021/ja106365j

    15. [15]

      Chen, C.; Voss, T.; Fröhlich, R.; Kehr, G.; Erker, G. Org. Lett. 2011, 13, 62.  doi: 10.1021/ol102544x

    16. [16]

      Jiang, C.; Blacque, O.; Berke, H. Organometallics 2010, 29, 125.  doi: 10.1021/om9008636

    17. [17]

      Reddy, J. S.; Xu, B.-H.; Mahdi, T.; Fröhlich, R.; Kehr, G.; Stephan, D. W.; Erker, G. Organometallics 2012, 31, 5638.  doi: 10.1021/om3006068

    18. [18]

      Nie, W.-L.; Klare, H. F. T.; Oestreich, M.; FrÖhlich, R.; Kehr, G.; Erker, G. Z. Naturforsch. 2012, 67b, 987.

    19. [19]

      Xu, Y.-Y.; Li, Z.; Borzov, M.; Nie, W.-L. Chem. Prog. 2012, 24(8), 1526.
       

    20. [20]

      Tian, C.; Jiang, Y.; Borzov, M.; Nie, W.-L. Acta Chim. Sinica 2015, 73, 1203.
       

    21. [21]

      Hu, X.; Tian, C.; Jiang, Y.; Borzov, M.; Nie, W.-L. Acta Chim. Sinica 2015, 73, 1025.  doi: 10.3866/PKU.WHXB201504141
       

    22. [22]

      Wen, Z.-G.; Tian, C.; Jiang, Y.; Borzov, M.; Nie, W.-L. Acta Chim. Sinica 2016, 74, 498
       

    23. [23]

    24. [24]

      Nie, W.-L.; Sun, G.-F.; Tian, C.; Borzov, M. Naturforsch. 2016, 71(10) b, 1029.

    25. [25]

  • 加载中
    1. [1]

      Daojuan Cheng Fang Fang . Exploration and Implementation of Science-Education Integration in Organic Chemistry Teaching for Pharmacy Majors: A Case Study on Nucleophilic Substitution Reactions of Alkyl Halides. University Chemistry, 2024, 39(11): 72-78. doi: 10.12461/PKU.DXHX202403105

    2. [2]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    3. [3]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    4. [4]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    5. [5]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    6. [6]

      Houjin Li Wenjian Lan . Name Reactions in University Organic Chemistry Laboratory. University Chemistry, 2024, 39(4): 268-279. doi: 10.3866/PKU.DXHX202310016

    7. [7]

      Tingbo Wang Yao Luo Bingyan Hu Ruiyuan Liu Jing Miao Huizhe Lu . Quantitative Computational Study on the Claisen Rearrangement Reaction of Allyl Phenyl Ethers: An Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(11): 278-285. doi: 10.12461/PKU.DXHX202403082

    8. [8]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    9. [9]

      Aidang Lu Yunting Liu Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029

    10. [10]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    11. [11]

      Aiai WANGLu ZHAOYunfeng BAIFeng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225

    12. [12]

      Feng Sha Xinyan Wu Ping Hu Wenqing Zhang Xiaoyang Luan Yunfei Ma . Design of Course Ideology and Politics for the Comprehensive Organic Synthesis Experiment of Benzocaine. University Chemistry, 2024, 39(2): 110-115. doi: 10.3866/PKU.DXHX202307082

    13. [13]

      Xinyu Zhu Meili Pang . Application of Functional Group Addition Strategy in Organic Synthesis. University Chemistry, 2024, 39(3): 218-230. doi: 10.3866/PKU.DXHX202308106

    14. [14]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    15. [15]

      Shicheng Yan . Experimental Teaching Design for the Integration of Scientific Research and Teaching: A Case Study on Organic Electrooxidation. University Chemistry, 2024, 39(11): 350-358. doi: 10.12461/PKU.DXHX202408036

    16. [16]

      Yong Wang Yingying Zhao Boshun Wan . Analysis of Organic Questions in the 37th Chinese Chemistry Olympiad (Preliminary). University Chemistry, 2024, 39(11): 406-416. doi: 10.12461/PKU.DXHX202403009

    17. [17]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    18. [18]

      Yihao Zhao Jitian Rao Jie Han . Synthesis and Photochromic Properties of 3,3-Diphenyl-3H-Naphthopyran: Design and Teaching Practice of a Comprehensive Organic Experiment. University Chemistry, 2024, 39(10): 149-155. doi: 10.3866/PKU.DXHX202402050

    19. [19]

      Jian Jin Jing Cheng Xueping Yang . Integration Practice of Organic Chemistry Experiment and Safety Education: Taking the Synthesis of Triphenylmethanol as an Example. University Chemistry, 2024, 39(3): 345-350. doi: 10.3866/PKU.DXHX202309010

    20. [20]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

Metrics
  • PDF Downloads(10)
  • Abstract views(2722)
  • HTML views(674)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return