Citation: Yang Zheyao, Ma Wei, Ying Yilun, Long Yitao. Study on the Resolution of Single Silver Nanoparticles Electrochemical Behavior at Nanoelectrode[J]. Acta Chimica Sinica, ;2017, 75(7): 671-674. doi: 10.6023/A17030129 shu

Study on the Resolution of Single Silver Nanoparticles Electrochemical Behavior at Nanoelectrode

  • Corresponding author: Long Yitao, ytlong@ecust.edu.cn
  • Received Date: 29 March 2017

    Fund Project: the National Natural Science Foundation of China 21327807the National Natural Science Foundation of China 21421004Fundamental Research Funds for the Central Universities 222201313004

Figures(4)

  • Single entity electrochemistry (SEC) has been attracting increasing interests over the past few years because of its extremely high sensitivity.This method offers the penetrating insights into the properties of individual entities that are masked in traditional ensemble measurements.Electrocatalytic amplification, blocking and direct electrochemical reaction of individual entities by detecting the current transients were employed as single entity collides at an electrode.However, it remains a challenge to enhance the current resolution in the SEC field, especially for the complex electrochemical behaviors.In this work, a strategy using a small-sized ultramicroelectrode and nanoelectrode was performed to reduce both background current and collision frequency, which allowed to reach the typical electrochemical signals.A low-noise electrochemical measurement system was used to acquire the data of single silver nanoparticles (AgNPs) collision at 480 nm Pt nanoelectrode and 10 μm ultramicroelectrode.The electrochemical measurement was carried out in 20 mmol·L-1 phosphate buffer (pH=7.4) at an applied potential of+0.6 V vs.Ag/AgCl wire in the presence of 58 nm AgNPs.The sampling rate was of 100 kHz by using an A/D convertor and the low-pass fitter was set at 5 kHz.Signal-noise ratio was improved by 50% when the diameter of working electrode decreased from 10 μm to 480 nm, resulting in more detailed information available at nanoelectrode during the collision processes of individual AgNPs.Both the employed nanoelectrode as working electrode and low-noise electrochemical measurement platform can significantly enhance the current resolution of SEC.High current resolution signals with picoampere and sub-millisecond sensitivity were observed for electrochemical oxidation of single AgNPs on nanoelectrode.In addition, the experimentally observed collision frequencies at varying size of ultramicroelectrode and nanoelectrode were in reasonable agreement with the theoretically calculated ones by Fick's Diffusion Laws within a typical variation associated with stochastic measurements.The electrochemical result indicate that individual AgNPs collisions are governed mainly by diffusion process.The high accuracy of the proposed current signal makes it possible to understand the electrochemical behavior of individual AgNPs as a function of the dwell time.Our results have demonstrated that the nanoelectrode would be a powerful platform for better delivering a complete picture of electrochemical behavior of individual entities, visualization of the electrons transfer process at single entity level.
  • 加载中
    1. [1]

      Actis, P.; Bentley, C. L.; Edwards, M. A.; Jacobse. L. Chem. Commun. 2016, 52, 13934.  doi: 10.1039/C6CC90523D

    2. [2]

      Peng, Y. Y.; Qian, R. C.; Hafez, M. E.; Long, Y. T. ChemElectroChem 2016, DOI:10. 1002/celc. 201600673.  doi: 10.1002/celc.201600673

    3. [3]

      Li, T.; Liu, Y.; Jiang, Y. N.; Wang, J. H.; Yu, P.; Mao, L. Q. Sci. Sin. Chim. 2016, 46, 1064(in Chinese).
       

    4. [4]

      Xiao, X. Y.; Bard, A. J. J. Am. Chem. Soc. 2007, 129, 9610.  doi: 10.1021/ja072344w

    5. [5]

      Zhou, Y. G.; Rees, N. V.; Compton, R. G. Angew. Chem. Int. Ed. 2011, 50, 4219.  doi: 10.1002/anie.v50.18

    6. [6]

      Kim, B. K.; Boika, A.; Kim, J.; Dick, J. E.; Bard, A. J. J. Am. Chem. Soc. 2014, 136, 4849.  doi: 10.1021/ja500713w

    7. [7]

      Dunevall, J.; Fathali, H.; Najafinobar, N.; Lovric, J.; Wigstrom, J.; Cans, A. S.; Ewing, A. G. J. Am. Chem. Soc. 2015, 137, 4344.  doi: 10.1021/ja512972f

    8. [8]

      Cheng, W.; Compton, R. G. Angew. Chem. Int. Ed. 2014, 126, 14148.  doi: 10.1002/ange.201408934

    9. [9]

      Oja, S. M.; Robinson, D. A.; Vitti, N. J.; Edwards, M. A.; Liu, Y.; White, H. S.; Zhang, B. J. Am. Chem. Soc. 2017, 139, 708.  doi: 10.1021/jacs.6b11143

    10. [10]

      Ustarroz, J.; Kang, M.; Bullions, E.; Unwin, P. R. Chem. Sci. 2017, 8, 1841.  doi: 10.1039/C6SC04483B

    11. [11]

      Ma, W.; Ma, H.; Chen, J. F.; Peng, Y. Y.; Yang, Z. Y.; Wang, H. F.; Ying, Y. L.; Tian, H.; Long, Y. T. Chem. Sci. 2017, 8, 1854.  doi: 10.1039/C6SC04582K

    12. [12]

      Ji, T. R.; Liang, Z. W.; Zhu, X. Y.; Shao, Y. H. Chinese J. Anal. Chem. 2010, 12, 1821(in Chinese).
       

    13. [13]

      Ying, Y. L.; Ding, Z. F.; Zhan, D. P.; Long, Y. T. Chem. Sci. 2017, 8, 3338.  doi: 10.1039/C7SC00433H

    14. [14]

      Han, L. H.; He, Q. F.; Zhao, X. S.; Cao, Y. Z.; Hu, Z. J.; Yan, Y. D.; Tian, Z. W.; Zhan, D. P. Sci. Sin. Chim. 2017, DOI:10. 1360/N032016-00217(in Chinese).  doi: 10.1360/N032016-00217

    15. [15]

      Zhou, Y. G.; Rees, N. V.; Compton, R. G. Chem. Commun. 2012, 48, 2510.  doi: 10.1039/c2cc17481b

    16. [16]

      Stuart, E. J. E.; Rees, N. V.; Cullen, J. T.; Compton, R. G. Nanoscale 2013, 5, 174.  doi: 10.1039/C2NR33146B

    17. [17]

      Kwon, S. J.; Zhou, H.; Fan, F. R. F.; Vorobyev, V.; Zhang, B.; Bard, A. J. Phys. Chem. Chem. Phys. 2011, 13, 5394.  doi: 10.1039/c0cp02543g

    18. [18]

      Ahn, H. S.; Bard, A. J. Angew. Chem. Int. Ed. 2015, 127, 13957.  doi: 10.1002/ange.201506963

  • 加载中
    1. [1]

      Zhengli Hu Jia Wang Yi-Lun Ying Shaochuang Liu Hui Ma Wenwei Zhang Jianrong Zhang Yi-Tao Long . Exploration of Ideological and Political Elements in the Development History of Nanopore Electrochemistry. University Chemistry, 2024, 39(8): 344-350. doi: 10.3866/PKU.DXHX202401072

    2. [2]

      Xue Dong Xiaofu Sun Shuaiqiang Jia Shitao Han Dawei Zhou Ting Yao Min Wang Minghui Fang Haihong Wu Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012

    3. [3]

      Jingwen Wang Minghao Wu Xing Zuo Yaofeng Yuan Yahao Wang Xiaoshun Zhou Jianfeng Yan . Advances in the Application of Electrochemical Regulation in Investigating the Electron Transport Properties of Single-Molecule Junctions. University Chemistry, 2025, 40(3): 291-301. doi: 10.12461/PKU.DXHX202406023

    4. [4]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    5. [5]

      Qianwen Han Tenglong Zhu Qiuqiu Lü Mahong Yu Qin Zhong . 氢电极支撑可逆固体氧化物电池性能及电化学不对称性优化. Acta Physico-Chimica Sinica, 2025, 41(1): 2309037-. doi: 10.3866/PKU.WHXB202309037

    6. [6]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    7. [7]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    8. [8]

      Yuting ZHANGZunyi LIUNing LIDongqiang ZHANGShiling ZHAOYu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204

    9. [9]

      Ru SONGBiao WANGChunling LUBingbing NIUDongchao QIU . Electrochemical properties of stable and highly active PrBa0.5Sr0.5Fe1.6Ni0.4O5+δ cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 639-649. doi: 10.11862/CJIC.20240397

    10. [10]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    11. [11]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    12. [12]

      Meiqing Yang Lu Wang Haozi Lu Yaocheng Yang Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-. doi: 10.3866/PKU.WHXB202310046

    13. [13]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    14. [14]

      Aoyu Huang Jun Xu Yu Huang Gui Chu Mao Wang Lili Wang Yongqi Sun Zhen Jiang Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100037-. doi: 10.3866/PKU.WHXB202408007

    15. [15]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

    16. [16]

      Shuhui Li Xucen Wang Yingming Pan . Exploring the Role of Electrochemical Technologies in Everyday Life. University Chemistry, 2025, 40(3): 302-307. doi: 10.12461/PKU.DXHX202406059

    17. [17]

      Zihan Lin Wanzhen Lin Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089

    18. [18]

      Yongjie ZHANGBintong HUANGYueming ZHAI . Research progress of formation mechanism and characterization techniques of protein corona on the surface of nanoparticles. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2318-2334. doi: 10.11862/CJIC.20240247

    19. [19]

      Zhuo WANGXiaotong LIZhipeng HUJunqiao PAN . Three-dimensional porous carbon decorated with nano bismuth particles: Preparation and sodium storage properties. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 267-274. doi: 10.11862/CJIC.20240223

    20. [20]

      Liangzhen Hu Li Ni Ziyi Liu Xiaohui Zhang Bo Qin Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001

Metrics
  • PDF Downloads(12)
  • Abstract views(1621)
  • HTML views(352)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return