Citation: Chen Yuhong, Liu Tingtinga, Zhang Meiling, Yuan Lihua, Zhang Caironga. First Principles Study on the Adsorption of H2 Molecules on Mg3N2 Surface[J]. Acta Chimica Sinica, ;2017, 75(7): 708-714. doi: 10.6023/A17030107 shu

First Principles Study on the Adsorption of H2 Molecules on Mg3N2 Surface

  • Corresponding author: Zhang Caironga, chenyh@lut.cn
  • Received Date: 16 March 2017

    Fund Project: the National Natural Science Foundation of China 51562022the State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology SKLAB02014004Basic scientific Research foundation for Gansu University of China 05-0342

Figures(6)

  • The first principles density theory calculations have been performed to investigate different Mg3N2 surface and the corresponding properties of H2 adsorption.The calculation of surface energy present that Mg3N2(011) is the most stable surface.The result show that the H2 parallel to the surface is a favorable adsorption and the most stable structure is H2 adsorbed onto the Model Ⅱ surface, which have the lowest energy.There are three main modes of chemical adsorption:The first adsorption mode is that H2 is dissociated into two H, and each H connect with N atom respectively to form double NH.This is the best adsorption model, which mainly results from the interaction between the H 1s orbit and N 1s, 2p orbits.By the analysis of the charge distribution variation H atom and N atom lose electrons, Mg obtain electrons.The second mode, H2 dissociated partly and the two H are adsorbed onto the same N forming one NH2, forms covalent bond.From the analysis of the bond population, we conclude that the covalent bonds strengthen the structure of NH.In other words, the hydrogen desorption of NH2 is easier than NH.H2 is fully dissociated in the third mode.One H atom is adsorbed onto N forming a NH group, which is connected by covalent bond, while the other H atom is adsorbed onto Mg forming MgH, which is forming ionic bond.The reaction energy barrier show that there is no competition among the three adsorption modes.The model of forming two NH is the easiest pathway, which have the lowest reaction energy barrier of 0.848 eV.The second is that the adsorption of H2 molecules on the surface forming NH2 have the reaction energy barrier of 1.596 eV.The most unlikely adsorption model is that H2 is dissociated and forming the structure of NH+MgH, which have the reaction energy barrier of 5.495 eV.In addition, H2 also can be physically adsorbed onto Mg3N2(011) surface.
  • 加载中
    1. [1]

      Yuan, H. P.; Zhou, Z. Y.; Li, Z. N.; Ye, J. H.; Guo, X. M.; Jiang, L. J.; Wang, S. M.; Liu, X. P. Int. J. Hydrogen Energy 2013, 38, 7881.  doi: 10.1016/j.ijhydene.2013.04.050

    2. [2]

      Li, Z.; Cai, B.; Zhang, J. L.; Lu, F. S. Met. Funct. Mater. 2013, 20, 40(in Chinese).
       

    3. [3]

      Han, S. C.; Lee, P. S.; Lee, J. Y. J. Alloys Compd. 2000, 306, 219.  doi: 10.1016/S0925-8388(00)00753-2

    4. [4]

      Miao, H.; Wang, W. G. J. Alloys Compd. 2010, 508, 592.  doi: 10.1016/j.jallcom.2010.08.132

    5. [5]

      Yang, X. H.; Xie, Z. M.; He, J.; Yu, L. Chin. J. Org. Chem. 2015, 35, 603(in Chinese).
       

    6. [6]

      Tang, C. M.; Wu, J. R.; Wan, Y. M.; Zhang, Z. J.; Kang, J.; Xiang, Y. Y.; Zhu, W. H. Acta Chim. Sinica 2015, 73, 1189(in Chinese).
       

    7. [7]

      Chen, P.; Xiong, Z.; Luo, J.; Lin, J.; Tan, K. L. Nature 2002, 420, 302.  doi: 10.1038/nature01210

    8. [8]

      Chen, P.; Xiong, Z.; Luo, J.; Lin, J.; Tan, K. L. J. Phys. Chem. B 2003, 107, 10967.  doi: 10.1021/jp034149j

    9. [9]

      Hu, J. J.; Xiong, Z. T.; Wu, G. T.; Chen, P.; Murata, K. J.; Sakata, K. J. Power Sources 2006, 159, 120.  doi: 10.1016/j.jpowsour.2006.04.005

    10. [10]

      Hu, J. J.; Wu, G. T.; Liu, Y. F.; Xiong, Z. T.; Chen, P. J. Phys. Chem. B 2006, 110, 14688.  doi: 10.1021/jp061279u

    11. [11]

      Xiong, Z. T.; Hu, J. J.; Wu, G. T.; Chen, P.; Luo, W. F.; Gross, K.; Wang, J. J. Alloys Compd. 2005, 398, 235.  doi: 10.1016/j.jallcom.2005.02.010

    12. [12]

      Chen, Y. H.; Zhang, B. W.; Zhang, C. R.; Zhang, M. L.; Kang, L.; Luo, Y. C. Chin. Phys. Lett. 2014, 31, 063101.  doi: 10.1088/0256-307X/31/6/063101

    13. [13]

      Chen, Y. H.; Du, R.; Zhang, Z. L.; Wang, W. C.; Zhang, C. R.; Kang, L.; Luo, Y, C. Acta Phys. Sin. 2011, 60, 086801.

    14. [14]

      Zhang, C. J.; Alavi, A. J. Phys. Chem. B 2006, l10, 7139.
       

    15. [15]

      Wang, Q.; Chen, Y. G.; Zheng, X.; Niu, G.; Wu, C. L.; Tao, M. D. Physica B 2009, 404, 3431.  doi: 10.1016/j.physb.2009.05.030

    16. [16]

      Wang, Q.; Chen, Y. G.; Gai, J. G.; Wu, C. L.; Tao, M. D. J. Phys. Chem. C 2008, 112, 18264.  doi: 10.1021/jp806700h

    17. [17]

      Zhang, J.; Huang, Y. N.; Mao, C.; Long, C. G.; Shao, Y. M.; Fu, J. Q.; Peng, P. Acta Chim. Sinica 2010, 68, 2077(in Chinese).
       

    18. [18]

      Clark, S. J.; Segall, M. D.; Pickard, C. J.; Hasnip, P. J.; Probert, M. I. J.; Refson, K. R.; Payne, M. C. Z. Kristallogr. 2005, 220, 567.

    19. [19]

      Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865.  doi: 10.1103/PhysRevLett.77.3865

    20. [20]

      Vanderbilt, D. Phys. Rev. B 1990, 41, 7892.  doi: 10.1103/PhysRevB.41.7892

    21. [21]

      Reckeweg, O.; Disalvo, F. J. Z. Anorg. Allg. Chem. 2001, 627, 371.  doi: 10.1002/1521-3749(200103)627:3<371::AID-ZAAC371>3.0.CO;2-A

    22. [22]

      Chiou, W. C.; Cartet, E. A. Surf. Sci. 2003, 530, 88.  doi: 10.1016/S0039-6028(03)00352-2

    23. [23]

      Alfonso, D. R. Surf. Sci. 2008, 602, 2758.  doi: 10.1016/j.susc.2008.07.001

    24. [24]

      Pan, C. C.; Chen, Y. H.; Wu, N.; Zhang, M. L.; Yuan, L. H.; Zhang, C. R. Int. J. Hydrogen Energy 2016, 41, 15756.  doi: 10.1016/j.ijhydene.2016.04.143

    25. [25]

      Kresse, G.; Hanfner, J. Surf. Sci. 2000, 459, 287.  doi: 10.1016/S0039-6028(00)00457-X

    26. [26]

      Huda, M. N.; Ray, A. K. Phys. B 2005, 366, 95.  doi: 10.1016/j.physb.2005.05.036

    27. [27]

      Meng, D. Q.; Luo, W. H.; Li, G.; Chen, H. C. Acta Phys. Sin. 2009, 58, 8224(in Chinese).  doi: 10.7498/aps.58.8224

    28. [28]

      Luo, W. H.; Meng, D. Q.; Li, G.; Chen, H. C. Acta Phys. Sin. 2008, 57, 160(in Chinese).  doi: 10.7498/aps.57.160

    29. [29]

      Du, R.; Chen, Y. H.; Zhang, Z. L.; Wang, W. C.; Zhang, C. R.; Kang, L.; Luo, Y. C. Acta Chim. Sinica 2011, 69, 1167(in Chinese).
       

    30. [30]

      Govind, N.; Petersen, M.; Fitzgerald, G.; King-Smith, D.; Andzelm, J. Comput. Mater. Sci. 2003, 28, 250.  doi: 10.1016/S0927-0256(03)00111-3

    31. [31]

      Mulliken, R. S. J. Chem. Phys. 1955, 23, 1833.  doi: 10.1063/1.1740588

    32. [32]

      Liang, C.; Liu, Y. F.; Luo, K.; Li, B.; Gao, M. X.; Pan, H. G.; Wang, Q. D. Chem. Eur. J. 2010, 16, 963.

    33. [33]

      Becke, A. D.; Edgecombe, K. E. J. Chem. Phys. 1990, 92, 5397.  doi: 10.1063/1.458517

    34. [34]

      Burdett, J. K.; McCormick, T. A. J. Phys. Chem. A 1998, 102, 6366.  doi: 10.1021/jp9820774

    35. [35]

      Santis, L. D.; Resta, R. Surf. Sci. 2000, 450, 126.  doi: 10.1016/S0039-6028(00)00057-1

    36. [36]

      Tsirelson, V.; Stash, A. Chem. Phys. Lett. 2002, 351, 142.  doi: 10.1016/S0009-2614(01)01361-6

  • 加载中
    1. [1]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    2. [2]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    3. [3]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    4. [4]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    5. [5]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045

    6. [6]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    7. [7]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    8. [8]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    9. [9]

      Jing Wang Pingping Li Yuehui Wang Yifan Xiu Bingqian Zhang Shuwen Wang Hongtao Gao . Treatment and Discharge Evaluation of Phosphorus-Containing Wastewater. University Chemistry, 2024, 39(5): 52-62. doi: 10.3866/PKU.DXHX202309097

    10. [10]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    11. [11]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    12. [12]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    13. [13]

      Shuanglin TIANTinghong GAOYutao LIUQian CHENQuan XIEQingquan XIAOYongchao LIANG . First-principles study of adsorption of Cl2 and CO gas molecules by transition metal-doped g-GaN. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1189-1200. doi: 10.11862/CJIC.20230482

    14. [14]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

    15. [15]

      Fei Xie Chengcheng Yuan Haiyan Tan Alireza Z. Moshfegh Bicheng Zhu Jiaguo Yud带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013

    16. [16]

      Yubang Li Xixi Hu Daiqian Xie . The microscopic formation mechanism of O + H2 products from photodissociation of H2O. Chinese Journal of Structural Chemistry, 2024, 43(5): 100274-100274. doi: 10.1016/j.cjsc.2024.100274

    17. [17]

      Bicheng Zhu Jingsan Xu . S-scheme heterojunction photocatalyst for H2 evolution coupled with organic oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100327-100327. doi: 10.1016/j.cjsc.2024.100327

    18. [18]

      Peipei Sun Jinyuan Zhang Yanhua Song Zhao Mo Zhigang Chen Hui Xu . 引入内建电场增强光载流子分离以促进H2的生产. Acta Physico-Chimica Sinica, 2024, 40(11): 2311001-. doi: 10.3866/PKU.WHXB202311001

    19. [19]

      Hualin JiangWenxi YeHuitao ZhenXubiao LuoVyacheslav FominskiLong YePinghua Chen . Novel 3D-on-2D g-C3N4/AgI.x.y heterojunction photocatalyst for simultaneous and stoichiometric production of H2 and H2O2 from water splitting under visible light. Chinese Chemical Letters, 2025, 36(2): 109984-. doi: 10.1016/j.cclet.2024.109984

    20. [20]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

Metrics
  • PDF Downloads(55)
  • Abstract views(4124)
  • HTML views(1069)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return