Citation: Xia Xuefen, Hua Yilong, Huang Xiaoyue, Ling Lan, Zhang Weixian. Removal of Arsenic and Selenium with Nanoscale Zero-Valent Iron (nZⅥ)[J]. Acta Chimica Sinica, ;2017, 75(6): 594-601. doi: 10.6023/A17030099 shu

Removal of Arsenic and Selenium with Nanoscale Zero-Valent Iron (nZⅥ)

  • Corresponding author: Ling Lan, linglan@tongji.edu.cn Zhang Weixian, zhangwx@tongji.edu.cn
  • Received Date: 13 March 2017

    Fund Project: the National Natural Science Foundation of China 21677107the National Natural Science Foundation of China 51578398the National Natural Science Foundation of China 21307094

Figures(9)

  • Arsenic (As(Ⅲ/Ⅴ)) and selenium (Se(Ⅳ/Ⅵ)) are toxic inorganic contaminants in groundwater and industrial wastewater. The pollution caused by As and Se has become an environmental concern throughout the world. A variety of treatment technologies have been applied for As and Se removal from aqueous solutions. Among them, nanoscale zero-valent iron (nZⅥ) has been found to have a remarkable capability to remove As and Se from waters. Although lots of studies on the process of As and Se removal with nZⅥ are published, a systematic comparative study is still limited. In this study, the removal capacities of As(Ⅲ), As(Ⅴ), Se(Ⅳ) and Se(Ⅵ) with nZⅥ in a single-specie system were compared. The performances of nZⅥ for As(Ⅲ), As(Ⅴ), Se(Ⅳ) and Se(Ⅵ) were investigated on different conditions (including dissolved oxygen, nZⅥ dosage, contact time, and initial solution pH). The morphology and structure of fresh and spent nZⅥ were also examined by spherical aberration corrected scanning transmission electron microscopy (Cs-STEM) intergrated with energy-dispersive X-ray spectrometry (XEDS), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). The batch experiments were conducted at room temperature in the 50-mL glass vials sealed with screwcaps. According to the speciation diagram, H3AsO30 and H2AsO4- are the respective predominant dissolved As(Ⅲ) and As(Ⅴ) species respectively at pH 5.0; while HSeO3- and SeO42- are the predominant dissolved Se(Ⅳ) and Se(Ⅵ) species respectively at pH 5.0. The results showed that the removal capacities of As and Se investigated generally followed the order of Se(Ⅳ)> As(Ⅲ)> Se(Ⅵ)> As(Ⅴ). Dissolved oxygen (DO) was found no apparent effects on the removal of As(Ⅲ) and Se(Ⅳ), while the removal performance of As(Ⅴ) and Se(Ⅵ) was inhibited at high dissolved oxygen level (>14 mg/L). The removal of As and Se were enhanced with increasing nZⅥ dosage. Initial solution pH had no significant effect on Se(Ⅳ) removal, whereas the removal of As(Ⅲ), As(Ⅴ), and Se(Ⅵ) appeared to be strongly dependent on the initial solution pH. The spent nZⅥ were different due to the different mechanisms of As(Ⅲ/Ⅴ) and Se(Ⅳ/Ⅵ) reactions with nZⅥ. The results will be useful for the application of nZⅥ to the treatment of As/Se-containing wastewater.
  • 加载中
    1. [1]

      Mirza, A.; Ramachandran, V. Removal of Arsenic and Selenium from Wastewaters——A Review, Minerals, Metals & Materials Society, Warrendale, PA, United States, 1996.

    2. [2]

      Cui, G.; Fu, Y.; Luo, J.; Liu, P.; Ding, A. Acta Chim. Sinica 2012, 70, 1059.
       

    3. [3]

      Torres, J.; Pintos, V.; Gonzatto, L.; Domínguez, S.; Kremer, C.; Kremer, E. Chem. Geol. 2011, 288, 32.
       

    4. [4]

      Missana, T.; Alonso, U.; Scheinost, A.; Granizo, N.; García-Gutiérrez, M. Geochim. Cosmochim. Acta 2009, 73, 6205.  doi: 10.1016/j.gca.2009.07.005

    5. [5]

      Winkel, L. H. E.; Johnson, C. A.; Lenz, M.; Grundl, T.; Leupin, O. X.; Amini, M.; Charlet, L. Environ. Sci. Technol. 2012, 46, 571.  doi: 10.1021/es203434d

    6. [6]

      Korte, N. E.; Fernando, Q. Crit. Rev. Environ. Control 1991, 21, 1.  doi: 10.1080/10643389109388408

    7. [7]

      Hamilton, S. J. Sci. Total Environ. 2004, 326, 1.  doi: 10.1016/j.scitotenv.2004.01.019

    8. [8]

      Cui, G.; Guo, Y.; Liu, P. Acta Chim. Sinica 2012, 70, 2525.  doi: 10.3866/PKU.WHXB201208222
       

    9. [9]

      Yamani, J. S.; Lounsbury, A. W.; Zimmerman, J. B. Water Res. 2016, 88, 889.  doi: 10.1016/j.watres.2015.11.017

    10. [10]

      Mohan, D.; Pittman, C. U. J. Hazard. Mater. 2007, 142, 1.  doi: 10.1016/j.jhazmat.2007.01.006

    11. [11]

      Olegario, J. T.; Yee, N.; Miller, M.; Sczepaniak, J.; Manning, B. J. Nanopart. Res. 2010, 12, 2057.  doi: 10.1007/s11051-009-9764-1

    12. [12]

      Ramos, M. A.; Yan, W.; Li, X. Q.; Koel, B. E.; Zhang, W. X. J. Phys. Chem. C 2009, 113, 14591.

    13. [13]

      Kanel, S. R.; Manning, B.; Charlet, L.; Choi, H. Environ. Sci. Technol. 2005, 39, 1291.  doi: 10.1021/es048991u

    14. [14]

      Ling, L.; Pan, B.; Zhang, W. X. Water Res. 2015, 71, 274.  doi: 10.1016/j.watres.2015.01.002

    15. [15]

      Yan, W.; Ramos, M. A. V.; Koel, B. E.; Zhang, W. X. J. Phys. Chem. C 2012, 116, 5303.  doi: 10.1021/jp208600n

    16. [16]

      Kanel, S. R.; Greneche, J. M.; Choi, H. Environ. Sci. Technol. 2006, 40, 2045.  doi: 10.1021/es0520924

    17. [17]

      Xia, X.; Ling, L.; Zhang, W. X. Environ. Sci.:Nano 2017, 4, 52.  doi: 10.1039/C6EN00231E

    18. [18]

      Xia, X.; Ling, L.; Zhang, W. X. Chemosphere 2017, 168, 1597.  doi: 10.1016/j.chemosphere.2016.11.150

    19. [19]

      Ling, L.; Zhang, W. X. Environ. Sci. Technol. Lett. 2014, 1, 305.  doi: 10.1021/ez5001512

    20. [20]

      Yan, W.; Vasic, R.; Frenkel, A. I.; Koel, B. E. Environ. Sci. Technol. 2012, 46, 7018.  doi: 10.1021/es2039695

    21. [21]

      Yan, W.; Lien, H.-L.; Koel, B. E.; Zhang, W. X. Environ. Sci.:Proc. Impacts 2013, 15, 63.  doi: 10.1039/C2EM30691C

    22. [22]

      Ling, L.; Zhang, W. X. Environ. Sci. Technol. 2017, 51, 2288.  doi: 10.1021/acs.est.6b04315

    23. [23]

      Li, S.; Wang, W.; Liang, F.; Zhang, W. X. J. Hazard. Mater. 2017, 322, Part A, 163.
       

    24. [24]

      Yan, W.; Ramos, M. A.; Koel, B. E.; Zhang, W. X. Chem. Commun. 2010, 46, 6995.  doi: 10.1039/c0cc02311f

    25. [25]

      O'Carroll, D.; Sleep, B.; Krol, M.; Boparai, H.; Kocur, C. Adv. Water Res. 2013, 51, 104.  doi: 10.1016/j.advwatres.2012.02.005

    26. [26]

      Klas, S.; Kirk, D. W. Sep. Purif. Technol. 2013, 116, 222.  doi: 10.1016/j.seppur.2013.05.044

    27. [27]

      Kanel, S. R.; Greneche, J. M.; Choi, H. Environ. Sci. Technol. 2006, 40, 2045.  doi: 10.1021/es0520924

    28. [28]

      Zhang, Y. Q.; Wang, J. F.; Amrhein, C.; Frankenberger, W. T. J. Environ. Qual. 2005, 34, 487.  doi: 10.2134/jeq2005.0487

    29. [29]

      Tang, C.; Huang, Y. H.; Zeng, H.; Zhang, Z. Water Res. 2014, 67, 166.  doi: 10.1016/j.watres.2014.09.016

    30. [30]

      Tang, C.; Huang, Y. H.; Zeng, H.; Zhang, Z. Chem. Eng. J. 2014, 244, 97.  doi: 10.1016/j.cej.2014.01.059

    31. [31]

      Yoon, I.-H.; Kim, K.-W.; Bang, S.; Kim, M. G. Appl. Catal. B:Environ. 2011, 104, 185.  doi: 10.1016/j.apcatb.2011.02.014

    32. [32]

      Liang, L.; Guan, X.; Huang, Y.; Ma, J.; Sun, X.; Qiao, J.; Zhou, G. Sep. Purif. Technol. 2015, 156, 1064.  doi: 10.1016/j.seppur.2015.09.062

    33. [33]

      Sarathy, V.; Tratnyek, P. G.; Nurmi, J. T.; Baer, D. R.; Amonette, J. E.; Chun, C. L.; Penn, R. L.; Reardon, E. J. J. Phys. Chem. C 2008, 112, 2286.  doi: 10.1021/jp0777418

    34. [34]

      Song, J.; Jia, S.-Y.; Yu, B.; Wu, S.-H.; Han, X. J. Hazard. Mater. 2015, 294, 70.  doi: 10.1016/j.jhazmat.2015.03.048

    35. [35]

      Lien, H.-L.; Wilkin, R. T. Chemosphere 2005, 59, 377.  doi: 10.1016/j.chemosphere.2004.10.055

    36. [36]

      Morin, G.; Wang, Y.; Ona-Nguema, G.; Juillot, F.; Calas, G.; Menguy, N.; Aubry, E.; Bargar, J. R.; Brown Jr, G. E. Langmuir 2009, 25, 9119.  doi: 10.1021/la900655v

    37. [37]

      Fendorf, S.; Eick, M. J.; Grossl, P.; Sparks, D. L. Environ. Sci. Technol. 1997, 31, 315.  doi: 10.1021/es950653t

    38. [38]

      Grossl, P. R.; Eick, M.; Sparks, D. L.; Goldberg, S.; Ainsworth, C. C. Environ. Sci. Technol. 1997, 31, 321.  doi: 10.1021/es950654l

    39. [39]

      Kanel, S. R.; Nepal, D.; Manning, B.; Choi, H. J. Nanopart. Res. 2007, 9, 725.  doi: 10.1007/s11051-007-9225-7

    40. [40]

      Jegadeesan, G.; Mondal, K.; Lalvani, S. B. Environ. Prog. 2005, 24, 289.  doi: 10.1002/(ISSN)1547-5921

    41. [41]

      Amstaetter, K.; Borch, T.; Larese-Casanova, P.; Kappler, A. Environ. Sci. Technol. 2009, 44, 102.
       

    42. [42]

      Hug, S. J.; Leupin, O. Environ. Sci. Technol. 2003, 37, 2734.  doi: 10.1021/es026208x

    43. [43]

      Tuček, J.; Prucek, R.; Kolařík, J.; Zoppellaro, G.; Petr, M.; Filip, J.; Sharma, V. K.; Zbořil, R. ACS Sustain. Chem. Eng. 2017, 5, 3027.  doi: 10.1021/acssuschemeng.6b02698

    44. [44]

      Dixit, S.; Hering, J. G. Environ. Sci. Technol. 2003, 37, 4182.  doi: 10.1021/es030309t

    45. [45]

      Jordan, N.; Foerstendorf, H.; Weiß, S.; Heim, K.; Schild, D.; Brendler, V. Geochim. Cosmochim. Acta 2011, 75, 1519.  doi: 10.1016/j.gca.2011.01.012

    46. [46]

      Myneni, S.; Tokunaga, T. K.; Brown, G. Science 1997, 278, 1106.  doi: 10.1126/science.278.5340.1106

    47. [47]

      Duc, M.; Lefevre, G.; Fedoroff, M.; Jeanjean, J.; Rouchaud, J.; Monteil-Rivera, F.; Dumonceau, J.; Milonjic, S. J. Environ. Radioact. 2003, 70, 61.  doi: 10.1016/S0265-931X(03)00125-5

    48. [48]

      Huang, L.; Yao, L.; He, Z.; Zhou, C.; Li, G.; Yang, B.; Deng, X. Chemosphere 2014, 100, 57.  doi: 10.1016/j.chemosphere.2013.12.074

    49. [49]

      Sun, Y. P.; Li, X. Q.; Cao, J.; Zhang, W. X.; Wang, H. P. Adv. Colloid Interface Sci. 2006, 120, 47.  doi: 10.1016/j.cis.2006.03.001

  • 加载中
    1. [1]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    2. [2]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    3. [3]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    4. [4]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    5. [5]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    6. [6]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

    7. [7]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    8. [8]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    9. [9]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    10. [10]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    11. [11]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    12. [12]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    13. [13]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    14. [14]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    15. [15]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    16. [16]

      Di WURuimeng SHIZhaoyang WANGYuehua SHIFan YANGLeyong ZENG . Construction of pH/photothermal dual-responsive delivery nanosystem for combination therapy of drug-resistant bladder cancer cell. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1679-1688. doi: 10.11862/CJIC.20240135

    17. [17]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    18. [18]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    19. [19]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    20. [20]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

Metrics
  • PDF Downloads(12)
  • Abstract views(1751)
  • HTML views(315)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return