Citation: Liu Chengshuai, Li Fangbai, Chen Manjia, Liao Changzhong, Tong Hui, Hua Jian. Adsorption and Stabilization of Lead during Fe(Ⅱ)-catalyzed Phase Transformation of Ferrihydrite[J]. Acta Chimica Sinica, ;2017, 75(6): 621-628. doi: 10.6023/A17030093 shu

Adsorption and Stabilization of Lead during Fe(Ⅱ)-catalyzed Phase Transformation of Ferrihydrite

  • Corresponding author: Li Fangbai, cefbli@soil.gd.cn
  • Received Date: 6 March 2017

    Fund Project: the Science and Technology Project of Guangdong Province S2013050014266the National Natural Science Foundation of China 41420104007the Science and Technology Project of Guangdong Province 2015A030313752the National Natural Science Foundation of China 41671240the National Natural Science Foundation of China 41673135the Science and Technology Project of Guangdong Province 2016B020242006the Science and Technology Project of Guangdong Province 2016A030313780

Figures(8)

  • Aqueous Fe(Ⅱ) (Fe(Ⅱ)aq)-catalyzed recrystallization of iron (hydr)oxides is the important chemical reaction of iron cycle in anaerobic environments, which poses significant effects on the environmental behavior of heavy metals in soils and sediments. Ferrihydrite is the initial iron mineral phase during the ferrous mineralization and has relatively unstable crystal structure. The structure transformation behavior of ferrihydrite is active and also poses important effects on environmental behavior of soil heavy metals. However, the Fe(Ⅱ)aq-catalyzed phase transformation of ferrihydrite has been rarely reported, especially with the coexisting metal ions. In the present study, the effects of coexisting heavy metal of Pb(Ⅱ) on the Fe(Ⅱ)aq-catalyzed phase transformation of ferrihydrite coupling the environmental behavior of Pb(Ⅱ) were systematically studied. The results show that ferrihydrite underwent efficient phase transformation rates when catalyzed by Fe(Ⅱ)aq whenever with or without the effect of Pb(Ⅱ). Compared with the reaction system that without Pb(Ⅱ), the adsorption of Fe(Ⅱ) on the surface of ferrihydrite was inhibited due to the competition of Pb(Ⅱ) when with the coexistence of Pb(Ⅱ), which further decreased the rates of Fe atom exchange between Fe(Ⅱ)aq and structural Fe(Ⅲ) of ferrihydrite. With the inhibited Fe atom exchange reaction, the phase transformation rates were relatively decreased and transformation products were changed during the Fe(Ⅱ)aq-catalyzed phase transformation of ferrihydrite. Goethite and magnetite were found to be the final transformed products of iron (hydr)oxides when without Pb(Ⅱ), while lepidocrocite was determined to be the main transformed product with little goethite and magnetite as the other transformed products when with Pb(Ⅱ). During the Fe(Ⅱ)aq-catalyzed phase transformation of ferrihydrite with the coexistence of Pb(Ⅱ), some Pb were stabilized through being incorporated into the structure of ferrihydrite transformed products with the possible mechanisms of occlusion by the crystal lattice and structural incorporation, so as to decrease the activity of the polluted heavy metal of Pb. The obtained results in the present study are expected to provide further insights for understanding the iron cycle coupling with the environmental behavior of heavy metals in soils and sediments.
  • 加载中
    1. [1]

      Latta, D. E.; Bachman, J. E.; Scherer, M. M. Environ. Sci. Technol. 2012, 46, 10614.  doi: 10.1021/es302094a

    2. [2]

      (a) Suter, D.; Siffert, C.; Sulzberger, B.; Stumm, W. Nturwissenschaften 1988, 75, 571. (b) Suter, D.; Banwart, S.; Stumm, W. Langmuir 1991, 7, 809.

    3. [3]

      (a) Williams, A. G.; Scherer, M. M. Environ. Sci. Technol. 2004, 38, 4782. (b) Pedersen, H. D.; Postma, D.; Jakobsen, R.; Larsen, O. Geochim. Cosmochim. Acta 2005, 69, 3967.

    4. [4]

      (a) Yanina, S. V.; Rosso, K. M. Science 2008, 320, 218. (b) Rosso, K. M.; Yanina, S. V.; Gorski, C. A.; Larese-Casanova, P.; Scherer, M. M. Environ. Sci. Technol. 2010, 44, 61.

    5. [5]

      Frierdich, A. J.; Helgeson, M.; Liu, C.; Wang, C.; Rosso, K. M.; Scherer, M. M. Environ. Sci. Technol. 2015, 49, 8479.  doi: 10.1021/acs.est.5b01276

    6. [6]

      (a) Frierdich, A. J.; Catalano, J. G. Environ. Sci. Technol. 2012, 46, 11070. (b) Frierdich, A. J.; Scherer, M. M.; Bachman, J. E.; Engelhard, M. H.; Rapponotti, B. W.; Catalano, J. G. Environ. Sci. Technol. 2012, 46, 10031.

    7. [7]

      Liu, C. S.; Zhu, Z. K.; Li, F. B.; Liu, T. X.; Liao, C. Z.; Lee, J. J.; Shih, K. M.; Tao, L.; Wu, Y. D. Chem. Geol. 2016, 444, 110.  doi: 10.1016/j.chemgeo.2016.10.002

    8. [8]

    9. [9]

    10. [10]

      (a) Tronc, E.; Belleville, P.; Jolivet, J. P.; Livage, J. Langmuir 1992, 8(1), 313. (b) Hansel, C. M.; Benner, S. G.; Fendorf, S. Environ. Sci. Technol. 2005, 39(18), 7147.

    11. [11]

      (a) Stewart, B. D.; Nico, P. S.; Fendorf, S. Environ. Sci. Technol. 2009, 43(13), 4922. (b) Amstaetter, K.; Borch, T.; Larese-Casanova, P.; Kappler, A. Environ. Sci. Technol. 2010, 44(1), 102. (c) Felmy, A. R.; Moore, D. A.; Rosso, K. M.; Qafoku, O.; Rai, D.; Buck, E. C.; Ilton, E. S. Environ. Sci. Technol. 2011, 45(9), 3952.

    12. [12]

      (a) Schwertmann, U.; Taylor, R. M. Clays Clay Miner. 1972, 20(3), 151. (b) Yang, L.; Steefel, C. I.; Marcus, M. A.; Bargar, J. R. Environ. Sci. Technol. 2010, 44(14), 5469.

    13. [13]

      Frierdich, A. J.; Catalano, J. G. Environ. Sci. Technol. 2012, 46, 1519.  doi: 10.1021/es203272z

    14. [14]

    15. [15]

      (a) Alvarez, M.; Rueda, E. H.; Sileo, E. E. Geochim. Cosmochim. Acta 2007, 71, 1009. (b) Kaur, N.; Gräfe, M.; Singh, B.; Kennedy, B. Clays Clay Miner. 2009, 57(2), 234.

    16. [16]

      Jang, J. H.; Dempsey, B. A.; Catchen, G. L.; Burgos, W. D. Colloids Surf., A 2003, 221(1), 55.
       

    17. [17]

      Boland, D. D.; Collins, R. N.; Miller, C. J.; Glover, C. J.; Waite, T. D. Environ. Sci. Technol. 2014, 48(16), 9086.  doi: 10.1021/es501750z

    18. [18]

    19. [19]

      (a) Handler, R. M.; Beard, B. L.; Johnson, C. M.; Scherer, M. M. Environ. Sci. Technol. 2009, 43, 1102. (b) Joshi, P.; Gorski, C. A. Environ. Sci. Technol. 2016, 50, 7315.

    20. [20]

      Handler, R. M.; Frierdich, A. J.; Johnson, C. M.; Rosso, K. M.; Beard, B. L.; Wang, C.; Latta, D. E.; Neumann, A.; Pasakarnis, T.; Premaratne, W. A. P. J.; Scherer, M. M. Environ. Sci. Technol. 2014, 48, 11302.  doi: 10.1021/es503084u

    21. [21]

      Reddy, T. R.; Frierdich, A. J.; Beard, B. L.; Johnson, C. M. Chem. Geol. 2015, 397, 118.  doi: 10.1016/j.chemgeo.2015.01.018

    22. [22]

      Schilt, A. A. Applications of 1, 10-Phenanthroline and Related Compounds, 1st ed., Pergamon Press, Oxford, 1969.

    23. [23]

      Lu, X. W.; Shih, K. M.; Liu, C. S.; Wang, F. Environ. Sci. Technol. 2013, 47, 9972.  doi: 10.1021/es401674d

    24. [24]

      Michel, F. M.; Ehm, L.; Antao, S. M.; Lee, P. L.; Chupas, P. J.; Liu, G.; Strongin, D. R.; Schoonen, M. A. A.; Phillips, B. L.; Parise, J. B.; Science 2007, 316, 1726.  doi: 10.1126/science.1142525

    25. [25]

      (a) De La Torre, A. G.; Bruque, S.; Aranda, M. A. G. J. Appl. Crystallogr. 2001, 34, 196. (b) Bernasconi, A.; Dapiaggi, M.; Gualtieri, A. F. J. Appl. Crystallogr. 2014, 47, 136.

  • 加载中
    1. [1]

      Qianqian Zhong Yucui Hao Guotao Yu Lijuan Zhao Jingfu Wang Jian Liu Xiaohua Ren . Comprehensive Experimental Design for the Preparation of the Magnetic Adsorbent Based on Enteromorpha Prolifera and Its Utilization in the Purification of Heavy Metal Ions Wastewater. University Chemistry, 2024, 39(8): 184-190. doi: 10.3866/PKU.DXHX202312013

    2. [2]

      Yuchen Zhou Huanmin Liu Hongxing Li Xinyu Song Yonghua Tang Peng Zhou . 设计热力学稳定的贵金属单原子光催化剂用于乙醇的高效非氧化转化形成高纯氢和增值产物乙醛. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-. doi: 10.1016/j.actphy.2025.100067

    3. [3]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    4. [4]

      Zongyuan Chen ChunSheng Shi Yiwen Li Ganlin Zu Qiang Jin Haishan Wang Fujun Wang Dekun Yan Zhijun Guo Wangsuo Wu . Measurement of Uranium Isotopes in Environmental Water Samples by Alpha-Spectroscopy: Design of an Undergraduate Radiochemistry Experiment. University Chemistry, 2025, 40(4): 353-358. doi: 10.12461/PKU.DXHX202406103

    5. [5]

      Xin Han Zhihao Cheng Jinfeng Zhang Jie Liu Cheng Zhong Wenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 100033-. doi: 10.3866/PKU.WHXB202404023

    6. [6]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    7. [7]

      Tingting XUWenjing ZHANGYongbo SONG . Research advances of atomic precision coinage metal nanoclusters in tumor therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2275-2285. doi: 10.11862/CJIC.20240229

    8. [8]

      Jian Li Yu Zhang Rongrong Yan Kaiyuan Sun Xiaoqing Liu Zishang Liang Yinan Jiao Hui Bu Xin Chen Jinjin Zhao Jianlin Shi . 高效靶向示踪钙钛矿纳米系统光电增效抗肿瘤. Acta Physico-Chimica Sinica, 2025, 41(5): 100042-. doi: 10.1016/j.actphy.2024.100042

    9. [9]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    10. [10]

      Fei Xie Chengcheng Yuan Haiyan Tan Alireza Z. Moshfegh Bicheng Zhu Jiaguo Yud带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013

    11. [11]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    12. [12]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    13. [13]

      Xueyu Lin Ruiqi Wang Wujie Dong Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005

    14. [14]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    15. [15]

      Lubing Qin Fang Sun Meiyin Li Hao Fan Likai Wang Qing Tang Chundong Wang Zhenghua Tang . 原子精确的(AgPd)27团簇用于硝酸盐电还原制氨:一种配体诱导策略来调控金属核. Acta Physico-Chimica Sinica, 2025, 41(1): 2403008-. doi: 10.3866/PKU.WHXB202403008

    16. [16]

      Shiyang He Dandan Chu Zhixin Pang Yuhang Du Jiayi Wang Yuhong Chen Yumeng Su Jianhua Qin Xiangrong Pan Zhan Zhou Jingguo Li Lufang Ma Chaoliang Tan . 铂单原子功能化的二维Al-TCPP金属-有机框架纳米片用于增强光动力抗菌治疗. Acta Physico-Chimica Sinica, 2025, 41(5): 100046-. doi: 10.1016/j.actphy.2025.100046

    17. [17]

      Donghui PANYuping XUXinyu WANGLizhen WANGJunjie YANDongjian SHIMin YANGMingqing CHEN . Preparation and in vivo tracing of 68Ga-labeled PM2.5 mimetic particles for positron emission tomography imaging. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 669-676. doi: 10.11862/CJIC.20230468

    18. [18]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    19. [19]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    20. [20]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

Metrics
  • PDF Downloads(26)
  • Abstract views(3090)
  • HTML views(571)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return