Citation: Li Baole, Liu Renrong, Liang Renxiao, Jia Yixia. Palladium/Amino Acid Co-Catalyzed Intramolecular α-Vinylation of Cyclohexanones[J]. Acta Chimica Sinica, ;2017, 75(5): 448-452. doi: 10.6023/A17020080 shu

Palladium/Amino Acid Co-Catalyzed Intramolecular α-Vinylation of Cyclohexanones

  • Corresponding author: Jia Yixia, yxjia@zjut.edu.cn
  • Received Date: 28 February 2017

    Fund Project: the National Natural Science Foundation of China 21372202the National Natural Science Foundation of China 21522207the National Natural Science Foundation of China 21502169

Figures(2)

  • Transition-metal-catalyzed α-vinylation of carbonyl compounds represents one of the most important carbon-carbon bond forming approaches to the synthesis of β, γ-unsaturated ketones, which are versatile synthetic building blocks and key structural motifs appearing in biologically active molecules. For this purpose, a number of methods have been developed by utilizing palladium-catalyzed cross-coupling of vinyl halide with C—H bond α-to carbonyl group. However, the elimination of vinyl halides in the presence of strong base would afford alkynes, which remained inert and therefore resulted in lower yields in the cross-coupling reaction. In recent years, cooperative catalysis merging transition metals and organic molecules represents a powerful strategy and renders numerous efficient transformations successful. Among which, palladium/enamine catalysis has emerged as an efficient method for the direct α-functionalization of ketones or aldehydes. We therefore envisaged that a direct cross-coupling of ketones and vinyl halides in the presence of Pd(0)/amine co-catalyst; the need of weak base would avoid the formation of alkynes through elimination of vinyl halides. Herein, we report a palladium/chiral amino acid co-catalyzed intramolecular α-vinylation reaction of cyclohexanones, which delivers a series of bridged ring compounds under mild reaction conditions in good to excellent yields. The resulting unique bridged ring system is analogous to the important morphan scaffold (2-azabicyclo[3.3.1]nonane), which is core structure existing in many important bioactive natural products. In the meantime, asymmetric version of this reaction was also tested and a number of desired products were achieved in moderate enantioselectivities. A representative procedure for this reaction is as following: To a dried Schlenk tube were added compound 1 (0.2 mmol), chiral amines (0.04 mmol, 20 mol%), K3PO4 (0.3 mmol, 1.5 equiv.), Pd(OAc)2 (0.01 mmol, 5 mol%) and PPh3 (0.024 mmol, 12 mol%) under N2, 2.0 mL THF was then introduced via a syringe. The resulting mixture was stirred at 85 ℃ (oil bath) for 72 h until the reaction was complete (monitored by TLC). The solvent was then removed under vacuum and the residue was purified by flash chromatography on silica gel, eluting with ethyl acetate/petroleum ether 1:10 (V/V) to afford the desired product.
  • 加载中
    1. [1]

    2. [2]

      Chieffi, A.; Kamikawa, K.; Ahman, J.; Fox, J. M.; Buchwald, S. L. Org. Lett. 2001, 3, 1897.  doi: 10.1021/ol0159470

    3. [3]

      Huang, J.; Bunel, E.; Faul, M. M. Org. Lett. 2007, 9, 4343.  doi: 10.1021/ol7019839

    4. [4]

      Lou, S.; Fu, G. C. J. Am. Chem. Soc. 2010, 132, 5010.  doi: 10.1021/ja1017046

    5. [5]

      (a) Staub, G. M.; Gloer, J. B.; Wicklow, D. T.; Dowd, P. F. J. Am. Chem. Soc. 1992, 114, 1015. (b) Kan-Fan, C.; Sevenet, T.; Had, H. A.; Bonin, M.; Quirion, J.-C.; Husson, H.-P. Nat. Prod. Lett. 1996, 7, 283. (c) Kong, F.; Graziani, E. I.; Andersen, R. J. J. Nat. Prod. 1998, 61, 267. (d) Heathcock, C. H.; Clasby, M.; Griffith, D. A.; Henke, B. R.; Sharp, M. J. Synlett 1995, 1995, 467. (e) Takayama, H.; Katakawa, K.; Kitajima, M.; Seki, H.; Yamaguchi, K.; Aimi, N. Org. Lett. 2002, 4, 1243. (f) Bonjoch, J.; Diaba, F. Stud. Nat. Prod. Chem. 2005, 32, 3. (g) Magnus, P.; Padilla, A. I. Org. Lett. 2006, 8, 3569. (h) Kobayashi, J.; Kubota, T. Nat. Prod. Rep. 2009, 26, 936. (i) Rinner, U.; Lentsch, C.; Aichinger, C. Synthesis 2010, 2010, 3763. (j) Mori, M. Heterocycles 2010, 81, 259.

    6. [6]

      Solé, D.; Diaba, F.; Bonjoch, J. J. Org. Chem. 2003, 5746.

    7. [7]

      Piers, E.; Marais, P. C. J. Org. Chem. 1990, 55, 3454.  doi: 10.1021/jo00298a014

    8. [8]

      (a) Shao, Z.; Zhang, H. Chem. Soc. Rev. 2009, 38, 2745. (b) Zhong, C.; Shi, X. Eur. J. Org. Chem. 2010, 2999.

    9. [9]

      (a) Ibrahem, I.; Córdova, A. Angew. Chem., Int. Ed. 2006, 45, 1952. (b) Afewerki, S.; Ibrahem, I.; Rydfjord, J.; Breistein, P.; Córdova, A. Chem. Eur. J. 2012, 18, 2972. (c) Mukherjee, S.; List, B. J. Am. Chem. Soc. 2007, 129, 11336. (d) Zhao, X. H.; Liu, D. L.; Guo, H.; Liu, Y. G.; Zhang, W. B. J. Am. Chem. Soc. 2011, 133, 19354. (e) Wu, H.; He, Y. P.; Gong, L. Z. Adv. Synth. Catal. 2012, 354, 975. (f) Tao, Z. L.; Zhang, W. Q.; Chen, D. F.; Adele, A.; Gong, L. Z. J. Am. Chem. Soc. 2013, 135, 9255. (g) Krautwald, S.; Sarlah, D.; Schafroth, M. A.; Carreira, E. M. Science 2013, 340, 1065. (h) Yoshida, M.; Terumine, T.; Masaki, E.; Hara, S. J. Org. Chem. 2013, 78, 10853. (i) Krautwald, S.; Schafroth, M. A.; Sarlah, D.; Carreira, E. M. J. Am. Chem. Soc. 2014, 136, 3020. (j) Huo, X.; Yang, G.; Liu, D.; Liu, Y.; Gridnev, I. D.; Zhang, W. Angew. Chem., Int. Ed. 2014, 53, 6776. (k) Huo, X.; Quan, M.; Yang, G. Q.; Zhao, X. H.; Liu, D. L.; Liu, Y. G.; Zhang, W. B. Org. Lett. 2014, 16, 1570. (l) Tang, S.; Wu, X. D.; Liao, W. Q.; Liu, K.; Liu, C.; Luo, S. Z.; Lei, A. W. Org. Lett. 2014, 16, 3584. (m) Wang, P. S.; Lin, H. C.; Zhai, Y. J.; Han, Z. Y.; Gong, L. Z. Angew. Chem., Int. Ed. 2014, 53, 12218. (n) Zhou, X. L.; Wang, P. S.; Zhang, D. W.; Liu, P.; Wang, C. M.; Gong, L. Z. Org. Lett. 2015, 17, 5120. (o) Zhou, H.; Zhang, L.; Xu, C.; Luo, S. Angew. Chem., Int. Ed. 2015, 54, 12645.

    10. [10]

      Xu, Y.; Su, T.; Huang, Z.; Dong, G. Angew. Chem., Int. Ed. 2016, 55, 2559.  doi: 10.1002/anie.201510638

    11. [11]

      Liu, R.-R.; Li, B.-L.; Lu, J.; Shen, C.; Gao, J.-R.; Jia, Y.-X. J. Am. Chem. Soc. 2016, 138, 5198.  doi: 10.1021/jacs.6b01214

  • 加载中
    1. [1]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    2. [2]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    3. [3]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    4. [4]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    5. [5]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    6. [6]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    7. [7]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    8. [8]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    9. [9]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    10. [10]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    11. [11]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    12. [12]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    13. [13]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    14. [14]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    15. [15]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    16. [16]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    17. [17]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    18. [18]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

Metrics
  • PDF Downloads(22)
  • Abstract views(1089)
  • HTML views(94)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return