Citation: Zhu Xin, Zhu Kai, Sun Bangjin, Fan Jian, Zhou Yi, Song Bo. Comprehensive Study of the Effect of DPE Additive on Photovoltaic Performance of 5, 6-Difluoro-benzo[1, 2, 5]thiadiazole Based Donor-acceptor Copolymers[J]. Acta Chimica Sinica, ;2017, 75(5): 464-472. doi: 10.6023/A17020074 shu

Comprehensive Study of the Effect of DPE Additive on Photovoltaic Performance of 5, 6-Difluoro-benzo[1, 2, 5]thiadiazole Based Donor-acceptor Copolymers

  • Corresponding author: Fan Jian, jianfan@suda.edu.cn Song Bo, songbo@suda.edu.cn
  • † The two authors contribute equally to this paper
  • Received Date: 23 February 2017

    Fund Project: the Natural Science Foundation of Jiangsu Province of China BK20161211the National Natural Science Foundation of China 91333204Soochow University, the Priority Academic Program Development of Jiangsu Higher Education Institutions PAPDthe Natural Science Foundation of Jiangsu Province of China BK20151216the National Natural Science Foundation of China 21472135the National Natural Science Foundation of China 51673139the Collaborative Innovation Center of Suzhou Nano Science and Technology CIC-Nanothe National Natural Science Foundation of China 51303118

Figures(6)

  • Three donor-acceptor polymers PBT2F-TT-a, PBT2F-TT and PBT2F-Se were synthesized via Stille cross-coupling reaction with 5, 6-difluoro-benzo[1, 2, 5]thiadiazole as the acceptor, and 2, 5-bis-(2-octyl-dodecyloxy)-1, 4-di(thieno[3, 2-b]thiophen-2-yl)-benzene and 2, 5-bis-(2-octyl-dodecyloxy)-1, 4-di(selenophen-2-yl)-benzene as the donors. The conjugated backbones of these polymers were decorated with alkoxyl groups to achieve the chain planarity through S…O and Se…O intramolecular interactions. Furthermore, the intramolecular F…H interaction was helpful to minimize the torsional angles. These three polymers were characterized by UV-vis absorption spectroscopy, thermal gravimetric analysis, cyclic voltammetry, gel permeation chromatography and elemental analysis. All the polymers showed intense absorption in the visible range and demonstrated suitable ELUMO and EHOMO, which match well with the fullerene-based acceptor. Thus these three polymers were applied as donors and incorporated with PC71BM as active materials in bulk heterojunction polymer solar cells (PSCs). Polymers PBT2F-TT-a and PBT2F-TT are constructed with the same monomers and the latter has a high molecular weight. A notable enhancement in PCE from 3.48% to 4.22% was observed as the molecular weight was increased from 6.79 kDa (PBT2F-TT-a) to 10.36 kDa (PBT2F-TT). The effect of diphenyl ether (DPE) additive on photovoltaic performance of PSCs based on these polymers has been comprehensively investigated by means of atomic force microscopy (AFM), transmission electron microscopy (TEM), alternating current impedance spectrometry (ACIS), space-charge-limited current (SCLC) analysis and short circuit current density -light intensity (JSC-Plight) measurement. As revealed by AFM and TEM measurement, PBT2F-Se:PC71BM blend with DPE exhibited a nanoscale phase separation dominated with fibrillar structures. On the other hand, the charge carrier mobilities of these blend films were greatly increased after the addition of DPE, giving rise to enhanced photovoltaic performances. Furthermore, the dramatic increase in JSC of PBT2F-Se-based devices should also benefit from the well-balanced hole and electron mobilities as revealed by SCLC results. Interestingly, JSC-Plight measurement suggested the weak bimolecular recombination for these devices without and with the addition of DPE. PSCs based on PBT2F-TT-a, PBT2F-TT, and PBT2F-Se showed good power conversion efficiency. Particularly, PBT2F-Se: PC71BM blend with DPE exhibited a good device performance with JSC of 10.75 mA/cm2, VOC of 0.72 V and PCE of 4.18%.
  • 加载中
    1. [1]

      Tang, C. W. Appl. Phys. Lett. 1986, 48, 183.  doi: 10.1063/1.96937

    2. [2]

      Yu, G.; Gao, J.; Hummelen, J. C.; Wudl, F.; Heeger, A. J. Science 1995, 270, 1789.  doi: 10.1126/science.270.5243.1789

    3. [3]

      (a) He, Z. ; Zhong, C. ; Su, S. ; Xu, M. ; Wu, H. ; Cao, Y. Nat. Photon. 2012, 6, 591; (b) Huang, Y. ; Kramer, E. J. ; Heeger, A. J. ; Bazan, G. C. Chem. Rev. 2014, 114, 7006; (c) Zhang, S. ; Ye, L. ; Zhao, W. ; Yang, B. ; Wang, Q. ; Hou, J. Sci. China Chem. 2015, 58, 248; (d) Peng, Q. ; Liu, X. ; Su, D. ; Fu, G. ; Xu, J. ; Dai, L. Adv. Mater. 2011, 23, 4554; (e) Yao, H. ; Ye, L. ; Zhang, H. ; Li, S. ; Zhang, S. ; Hou, J. Chem. Rev. 2016, 116, 7397; (f) Cheng, Y. J. ; Yang, S. H. ; Hsu, C. S. Chem. Rev. 2009, 109, 5868; (g) Qin, R. ; Geng, F. ; Wang, D. ; Yao, X. Chin. J. Org. Chem. 2015, 35, 2583 (in Chinese). (秦瑞平, 耿凡, 王丹丰, 姚小静, 有机化学, 2015, 35, 2583. ); (h) Liu, T. ; Pan, X. ; Meng, X. ; Liu, Y. ; Wei, D. ; Ma, W. ; Huo, L. ; Sun, X. ; Lee, T. H. ; Huang, M. ; Choi, H. ; Kim, J. Y. ; Choy, W. C. H. ; Sun, Y. Adv. Mater. 2017, 29, 1604251.

    4. [4]

      (a) Sun, Y.; Welch, G. C.; Leong, W. L.; Takacs, C. J.; Bazan, G. C.; Heeger, A. J. Nat. Mater. 2012, 11, 44; (b) Xu, S.; Zhou, Z.; Fan, H.; Ren, L.; Liu, F.; Zhu, X.; Russell, T. P. J. Mater. Chem. A 2016, 4, 17354; (c) Sun, Y. M.; Seifter, J.; Huo, L. J.; Yang, Y. L.; Hsu, B. B. Y.; Zhou, H. Q.; Sun, X. B.; Xiao, S.; Jiang, L.; Heeger, A. J. Adv. Energy Mater. 2014, 1400987.

    5. [5]

      (a) Anthony, J. E. Chem. Mater. 2011, 23, 583; (b) Brunetti, F. G.; Gong, X.; Tong, M.; Heeger, A. J.; Wudl, F. Angew. Chem. Int. Ed. 2010, 49, 532; (c) Gao, G.; Zhang, X.; Meng, D.; Zhang, A.; Liu, Y.; Jiang, W.; Sun, Y.; Wang, Z. RSC Adv. 2016, 6, 14027; (d) Liu, T.; Guo, Y.; Yi, Y.; Huo, L.; Xue, X.; Sun, X.; Fu, H.; Xiong, W.; Meng, D.; Wang, Z.; Liu, F.; Russell, T. P.; Sun, Y. Adv. Mater. 2016, 28, 10008; (e) Meng, D.; Sun, D.; Zhong, C.; Liu, T.; Fan, B.; Huo, L.; Li, Y.; Jiang, W.; Choi, H.; Kim, T.; Kim, J. Y.; Sun, Y.; Heeger, A. J. J. Am. Chem. Soc. 2016, 138, 375.

    6. [6]

      (a) Zhou, Y.; Kurosawa, T.; Ma, W.; Guo, Y.; Fang, L.; Vandewal, K.; Diao, Y.; Wang, C.; Yan, Q.; Reinspach, J.; Mei, J.; Appleton, A.; Koleilat, G. I.; Gao, Y.; Mannsfeld, S. C. B.; Salleo, A.; Ade, H.; Zhao, D.; Bao, Z. Adv. Mater. 2014, 26, 3767; (b) Li, Z.; Xu, X.; Zhang, W.; Meng, X.; Ma, W.; Yartsev, A.; Inganäs, O.; Andersson, M. R.; Janssen, R. A. J.; Wang, E. J. Am. Chem. Soc. 2016, 138, 10935.

    7. [7]

      (a) Lin, Y.; Zhao, F.; Wu, Y.; Chen, K.; Xia, Y.; Li, G.; Prasad, S. K. K.; Zhu, J.; Huo, L.; Bin, H.; Zhang, Z. G.; Guo, X.; Zhang, M.; Sun, Y.; Gao, F.; Wei, Z.; Ma, W.; Wang, C.; Hodgkiss, J.; Bo, Z.; Inganäs, O.; Li, Y.; Zhan, X. Adv. Mater. 2017, 29, 1604155; (b) Zhao, J.; Li, Y.; Yang, G.; Jiang, K.; Lin, H.; Ade, H.; Ma, W.; Yan, H. Nat. Energy 2016, 1, 15027; (c) He, Z.; Xiao, B.; Liu, F.; Wu, H.; Yang, Y.; Xiao, S.; Wang, C.; Russell, T. P.; Cao, Y. Nat. Photon. 2015, 9, 174; (d) Li, S.; Ye, L.; Zhao, W.; Zhang, S.; Mukherjee, S.; Ade, H.; Hou, J. Adv. Mater. 2016, 28, 9423; (e) Zhao, W.; Li, S.; Zhang, S.; Liu, X.; Hou, J. Adv Mater. 2017, 29, 1604059; (f) Yang, Y.; Zhang, Z. G.; Bin, H.; Chen, S.; Gao, L.; Xue, L.; Yang, C.; Li, Y. J. Am. Chem. Soc. 2016, 138, 15011.

    8. [8]

      Nguyen, D. T. T.; Kim, T.; Li, Y.; Song, S.; Nguyen, T. L.; Uddin, M. A.; Hwang, S.; Kim, J. Y.; Woo, H. Y. J. Polym. Sci, Part A: Polym. Chem. 2016, 54, 3826.  doi: 10.1002/pola.v54.24

    9. [9]

      (a) Liu, Y.; Zhao, J.; Li, Z.; Mu, C.; Ma, W.; Hu, H.; Jiang, K.; Lin, H.; Ade, H.; Yan, H. Nat. Commun. 2014, 5, 5293; (b) Zhang, S.; Yang, B.; Liu, D.; Zhang, H.; Zhao, W.; Wang, Q.; He, C.; Hou, J. Macromolecules 2016, 49, 120; (c) Stuart, A. C.; Tumbleston, J. R.; Zhou, H.; Li, W.; Liu, S.; Ade, H.; You, W. J. Am. Chem. Soc. 2013, 135, 1806; (d) Hu, H.; Jiang, K.; Yang, G.; Liu, J.; Li, Z.; Lin, H.; Liu, Y.; Zhao, J.; Zhang, J.; Huang, F.; Qu, Y.; Ma, W.; Yan, H. J. Am. Chem. Soc. 2015, 137, 14149; (e) Tang, D.; Liu, Y.; Zhang, Z.; Shu, Q.; Wang, B.; Fan, J.; Song, B. Org. Electron. 2016, 33, 187.

    10. [10]

      (a) Choi, H. ; Ko, S. J. ; Kim, T. ; Morin, P. O. ; Walker, B. ; Lee, B. H. ; Leclerc, M. ; Kim, J. Y. ; Heeger, A. J. Adv. Mater. 2015, 27, 3318; (b) Zhao, C. B. ; Wang, Z. L. ; Zhou, K. ; Ge, H. G. ; Zhang, Q. ; Jin, L. X. ; Wang, W. L. ; Yin, S. W. Acta Chim. Sinica 2016, 74, 251 (in Chinese). (赵蔡斌, 王占领, 周科, 葛红光, 张强, 靳玲侠, 王文亮, 尹世伟, 化学学报, 2016, 74, 251. )

    11. [11]

      Bin, H.; Zhang, Z. G.; Gao, L.; Chen, S.; Zhong, L.; Xue, L.; Yang, C.; Li, Y. J. Am. Chem. Soc. 2016, 138, 4657.  doi: 10.1021/jacs.6b01744

    12. [12]

      (a) Chen, H. Y.; Hou, J.; Zhang, S.; Liang, Y.; Yang, G.; Yang, Y.; Yu, L.; Wu, Y.; Li, G. Nat. Photonics 2009, 3, 649; (b) Lu, L.; Yu, L. Adv. Mater. 2014, 26, 4413; (c) Liang, Y.; Xu, Z.; Xia, J.; Tsai, S. T.; Wu, Y.; Li, G.; Ray, C.; Yu, L. Adv. Mater. 2010, 22, E135.

    13. [13]

      (a) Lee, W. ; Kim, G. H. ; Ko, S. J. ; Yum, S. ; Hwang, S. ; Cho, S. ; Shin, Y. H. ; Kim, J. Y. ; Woo, H. Y. Macromolecules 2014, 47, 1604; (b) Qin, R. ; Li, W. ; Li, C. ; Du, C. ; Veit, C. ; Schleiermacher, H. F. ; Andersson, M. ; Bo, Z. ; Liu, Z. ; Inganäs, O. ; Wuerfel, U. ; Zhang, F. J. Am. Chem. Soc. 2009, 131, 14612; (c) Zhang, C. ; Sun, Y. ; Dai, B. ; Zhang, X. ; Yang, H. ; Lin, B. ; Guo, L. Chin. J. Org. Chem. 2014, 34, 1701 (in Chinese). (张超, 孙莹, 戴斌, 张雪勤, 杨洪, 林保平, 郭玲香, 有机化学, 2014, 34, 1701. ); (d) Liu, Z. ; Xu, F. ; Yan, D. Acta Chim. Sinica. 2014, 72, 171 (in Chinese). (刘震, 徐丰, 严大东, 化学学报, 2014, 72, 171. ); (e) Ye, H. ; Li, W. ; Li, W. Chin. J. Org. Chem. 2012, 32, 266 (in Chinese). (叶怀英, 李文, 李维实, 有机化学, 2012, 32, 266. )

    14. [14]

      (a) Reichenbächer, K.; Süss, H. I.; Hulliger, J. Chem. Soc. Rev. 2005, 34, 22; (b) Lee, W.; Choi, H.; Hwang, S.; Kim, J. Y.; Woo, H. Y. Chem. Eur. J. 2012, 18, 2551; (c) Li, Y.; Lee, T. H.; Park, S. Y.; Uddin, M. A.; Kim, T.; Hwang, S.; Kim, J. Y.; Woo, H. Y. Polym. Chem. 2016, 7, 463; (d) Yao, H.; Yu, R.; Shin, T. J.; Zhang, H.; Zhang, S.; Jang, B.; Uddin, M. A.; Woo, H. Y.; Hou, J. Adv. Energy Mater. 2016, 6, 1600742; (e) Seifter, J.; Sun, Y.; Choi, H.; Lee, B. H.; Nguyen, T. L.; Woo, H. Y.; Heeger A. J. Adv. Mater. 2015, 27, 4989; (f) Gallaher, J. K.; Prasad, S. K. K.; Uddin, M. A.; Kim, T.; Kim, J. Y.; Woo, H. Y.; Hodgkiss, J. M. Energy Environ. Sci. 2015, 8, 2713.

    15. [15]

      Nguyen, T. L.; Choi, H.; Ko, S. J.; Uddin, M. A.; Walker, B.; Yum, S.; Jeong, J. E.; Yun, M. H.; Shin, T. J.; Hwang, S.; Kim, J. Y.; Woo, H. Y. Energy Environ. Sci. 2014, 7, 3040.  doi: 10.1039/C4EE01529K

    16. [16]

      Patra, A.; Bendikov, M. J. Mater. Chem. 2010, 20, 422.  doi: 10.1039/B908983G

    17. [17]

      (a) Lee, J.; Han, A. R.; Kim, J.; Kim, Y.; Oh, J. H.; Yang, C. J. Am. Chem. Soc. 2012, 134, 20713; (b) Kronemeijer, A. J.; Gili, E.; Shahid, M.; Rivnay, J.; Salleo, A.; Heeney, M.; Sirringhaus, H. Adv. Mater. 2012, 24, 1558; (c) Alghamdi, A. A. B.; Watters, D. C.; Yi, H.; Al-Faifi, S.; Almeataq, M. S.; Coles, D.; Kingsley, J.; Lidzey, D. G.; Iraqi, A. J. Mater. Chem. A 2013, 1, 5165.

    18. [18]

      Scharber, M. C.; Mühlbacher, D.; Koppe, M.; Denk, P.; Waldauf, C.; Heeger, A. J.; Brabec, C. J. Adv. Mater. 2006, 18, 789.  doi: 10.1002/(ISSN)1521-4095

    19. [19]

      (a) Chu, T. Y.; Lu, J.; Beaupré, S.; Zhang, Y.; Pouliot, J. R.; Zhou, J.; Najari, A.; Leclerc, M.; Tao, Y. Adv. Funct. Mater. 2012, 22, 2345; (b) Kang, H.; Uddin, M. A.; Lee, C.; Kim, K. H.; Nguyen, T. L.; Lee, W.; Li, Y.; Wang, C.; Woo, H. Y.; Kim, B. J. J. Am. Chem. Soc. 2015, 137, 2359.

    20. [20]

      Yu, D.; Oyewole, O. K.; Kwabi, D.; Tong, T.; Anye, V. C.; Asare, J.; Rwenyagila, E.; Fashina, A.; Akogwu, O.; Du, J.; Soboyejo, W. O. J. Appl. Phys. 2014, 116, 074506.  doi: 10.1063/1.4892393

    21. [21]

      (a) Yao, E. P.; Chen, C. C.; Gao, J.; Liu, Y.; Chen, Q.; Cai, M.; Hsu, W. C.; Hong, Z.; Li, G.; Yang, Y. Sol. Energy Mater. Sol. Cells 2014, 130, 20; (b) Huang, T. Y.; Patra, D.; Hsiao, Y. S.; Chang, S. H.; Wu, C. G.; Ho, K. C.; Chu, C. W. J. Mater. Chem. A 2015, 3, 10512.

    22. [22]

      (a) Kim, Y.; Yeom, H. R.; Kim, J. Y.; Yang, C. Energy Environ. Sci. 2013, 6, 1909; (b) Proctor, C. M.; Kuika, M.; Nguyena, T. Q. Prog. Polym. Sci. 2013, 38, 1941.

    23. [23]

      (a) Zhang, H.; Li, S.; Xu, B.; Yao, H.; Yang, B.; Hou, J. J. Mater. Chem. A 2016, 4, 18043; (b) Cowan, S. R.; Roy, A.; Heeger, A. J. Phys. Rev. B 2010, 82, 245207.

    24. [24]

      Bull, S. R.; Palmer, L. C.; Fry, N. J.; Greenfield, M. A.; Messmore, B. W.; Meade, T. J.; Stupp, S. I. J. Am. Chem. Soc. 2008, 130, 2742.  doi: 10.1021/ja710749q

    25. [25]

      Zhang, W.; Zhang, F.; Tang, R.; Fu, Y.; Wang, X.; Zhuang, X.; He, G.; Feng, X. Org. Lett. 2016, 18, 3618.  doi: 10.1021/acs.orglett.6b01659

    26. [26]

      Uy, R. L.; Yan, L.; Li, W.; You, W. Macromolecules 2014, 47, 2289.  doi: 10.1021/ma5001095

  • 加载中
    1. [1]

      Yaohua Li Qi Cao Xuanhua Li . Tailoring the configuration of polymer passivators in perovskite solar cells. Chinese Journal of Structural Chemistry, 2025, 44(2): 100413-100413. doi: 10.1016/j.cjsc.2024.100413

    2. [2]

      Jinge ZhuAiling TangLeyi TangPeiqing CongChao LiQing GuoZongtao WangXiaoru XuJiang WuErjun Zhou . Chlorination of benzyl group on the terminal unit of A2-A1-D-A1-A2 type nonfullerene acceptor for high-voltage organic solar cells. Chinese Chemical Letters, 2025, 36(1): 110233-. doi: 10.1016/j.cclet.2024.110233

    3. [3]

      Chengcheng XieChengyi XiaoHongshuo NiuGuitao FengWeiwei Li . Mesoporous organic solar cells. Chinese Chemical Letters, 2024, 35(11): 109849-. doi: 10.1016/j.cclet.2024.109849

    4. [4]

      Boyuan HuJian ZhangYulin YangYayu DongJiaqi WangWei WangKaifeng LinDebin Xia . Dual-functional POM@IL complex modulate hole transport layer properties and interfacial charge dynamics for highly efficient and stable perovskite solar cells. Chinese Chemical Letters, 2024, 35(7): 108933-. doi: 10.1016/j.cclet.2023.108933

    5. [5]

      Guixu Pan Zhiling Xia Ning Wang Hejia Sun Zhaoqi Guo Yunfeng Li Xin Li . Preparation of high-efficient donor-π-acceptor system with crystalline g-C3N4 as charge transfer module for enhanced photocatalytic hydrogen evolution. Chinese Journal of Structural Chemistry, 2024, 43(12): 100463-100463. doi: 10.1016/j.cjsc.2024.100463

    6. [6]

      Chen Lu Zefeng Yu Jing Cao . Advancement in porphyrin/phthalocyanine compounds-based perovskite solar cells. Chinese Journal of Structural Chemistry, 2024, 43(3): 100240-100240. doi: 10.1016/j.cjsc.2024.100240

    7. [7]

      Chi Li Peng Gao . Is dipole the only thing that matters for inverted perovskite solar cells?. Chinese Journal of Structural Chemistry, 2024, 43(6): 100324-100324. doi: 10.1016/j.cjsc.2024.100324

    8. [8]

      Kai Han Guohui Dong Ishaaq Saeed Tingting Dong Chenyang Xiao . Boosting bulk charge transport of CuWO4 photoanodes via Cs doping for solar water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100207-100207. doi: 10.1016/j.cjsc.2023.100207

    9. [9]

      Yuqing WangZhemin LiQingjun LuQizhao LiJiaxin LuoChengjie LiYongshu Xie . Solar cells based on doubly concerted companion dyes with the efficiencies modulated by inserting an ethynyl group at different positions. Chinese Chemical Letters, 2024, 35(5): 109093-. doi: 10.1016/j.cclet.2023.109093

    10. [10]

      Kangrong YanZiqiu ShenYanchun HuangBenfang NiuHongzheng ChenChang-Zhi Li . Curing the vulnerable heterointerface via organic-inorganic hybrid hole transporting bilayers for efficient inverted perovskite solar cells. Chinese Chemical Letters, 2024, 35(6): 109516-. doi: 10.1016/j.cclet.2024.109516

    11. [11]

      Bo YangPu-An LinTingwei ZhouXiaojia ZhengBing CaiWen-Hua Zhang . Facile surface regulation for highly efficient and thermally stable perovskite solar cells via chlormequat chloride. Chinese Chemical Letters, 2024, 35(10): 109425-. doi: 10.1016/j.cclet.2023.109425

    12. [12]

      Yingfen LiZhiqi WangYunhai ZhaoDajun LuoXueliang ZhangJun ZhaoZhenghua SuShuo ChenGuangxing Liang . Potassium doping for grain boundary passivation and defect suppression enables highly-efficient kesterite solar cells. Chinese Chemical Letters, 2024, 35(11): 109468-. doi: 10.1016/j.cclet.2023.109468

    13. [13]

      Zhiyang ZhangYi ChenYingnan ZhangChuanlang Zhan . Deuterated chloroform replaces ultra-dry chloroform to achieve high-efficient organic solar cells. Chinese Chemical Letters, 2025, 36(1): 110083-. doi: 10.1016/j.cclet.2024.110083

    14. [14]

      Rongjun ZhaoTai WuYong HuaYude Wang . Improving performance of perovskite solar cells enabled by defects passivation and carrier transport dynamics regulation via organic additive. Chinese Chemical Letters, 2025, 36(2): 109587-. doi: 10.1016/j.cclet.2024.109587

    15. [15]

      Wenbiao ZhangBolong YangZhonghua Xiang . Atomically dispersed Cu-based metal-organic framework directly for alkaline polymer electrolyte fuel cells. Chinese Chemical Letters, 2025, 36(2): 109630-. doi: 10.1016/j.cclet.2024.109630

    16. [16]

      Shaonan Liu Shuixing Dai Minghua Huang . The impact of ester groups on 1,8-naphthalimide electron transport material in organic solar cells. Chinese Journal of Structural Chemistry, 2024, 43(6): 100277-100277. doi: 10.1016/j.cjsc.2024.100277

    17. [17]

      Xiao ZhuYanbing MoJiawei ChenGaopan LiuYonggang WangXiaoli Dong . A weakly-solvated ether-based electrolyte for fast-charging graphite anode. Chinese Chemical Letters, 2024, 35(8): 109146-. doi: 10.1016/j.cclet.2023.109146

    18. [18]

      Yikun WangQiaomei ChenShijie LiangDongdong XiaChaowei ZhaoChristopher R. McNeillWeiwei Li . Near-infrared double-cable conjugated polymers based on alkyl linkers with tunable length for single-component organic solar cells. Chinese Chemical Letters, 2024, 35(4): 109164-. doi: 10.1016/j.cclet.2023.109164

    19. [19]

      Rui LiuYue YuLu DengMaoxia XuHaorong RenWenjie LuoXudong CaiZhenyu LiJingyu ChenHua Yu . The synergistic effect of A-site cation engineering and phase regulation enables efficient and stable Ruddlesden-Popper perovskite solar cells. Chinese Chemical Letters, 2024, 35(12): 109545-. doi: 10.1016/j.cclet.2024.109545

    20. [20]

      Xinyu YuFei WuXianglang SunLinna ZhuBaoyu XiaZhong'an Li . Low-cost dopant-free fluoranthene-based branched hole transporting materials for efficient and stable n-i-p perovskite solar cells. Chinese Chemical Letters, 2024, 35(10): 109821-. doi: 10.1016/j.cclet.2024.109821

Metrics
  • PDF Downloads(8)
  • Abstract views(504)
  • HTML views(44)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return