Citation: Zhu Xin, Zhu Kai, Sun Bangjin, Fan Jian, Zhou Yi, Song Bo. Comprehensive Study of the Effect of DPE Additive on Photovoltaic Performance of 5, 6-Difluoro-benzo[1, 2, 5]thiadiazole Based Donor-acceptor Copolymers[J]. Acta Chimica Sinica, ;2017, 75(5): 464-472. doi: 10.6023/A17020074 shu

Comprehensive Study of the Effect of DPE Additive on Photovoltaic Performance of 5, 6-Difluoro-benzo[1, 2, 5]thiadiazole Based Donor-acceptor Copolymers

  • Corresponding author: Fan Jian, jianfan@suda.edu.cn Song Bo, songbo@suda.edu.cn
  • † The two authors contribute equally to this paper
  • Received Date: 23 February 2017

    Fund Project: the Natural Science Foundation of Jiangsu Province of China BK20161211the National Natural Science Foundation of China 91333204Soochow University, the Priority Academic Program Development of Jiangsu Higher Education Institutions PAPDthe Natural Science Foundation of Jiangsu Province of China BK20151216the National Natural Science Foundation of China 21472135the National Natural Science Foundation of China 51673139the Collaborative Innovation Center of Suzhou Nano Science and Technology CIC-Nanothe National Natural Science Foundation of China 51303118

Figures(6)

  • Three donor-acceptor polymers PBT2F-TT-a, PBT2F-TT and PBT2F-Se were synthesized via Stille cross-coupling reaction with 5, 6-difluoro-benzo[1, 2, 5]thiadiazole as the acceptor, and 2, 5-bis-(2-octyl-dodecyloxy)-1, 4-di(thieno[3, 2-b]thiophen-2-yl)-benzene and 2, 5-bis-(2-octyl-dodecyloxy)-1, 4-di(selenophen-2-yl)-benzene as the donors. The conjugated backbones of these polymers were decorated with alkoxyl groups to achieve the chain planarity through S…O and Se…O intramolecular interactions. Furthermore, the intramolecular F…H interaction was helpful to minimize the torsional angles. These three polymers were characterized by UV-vis absorption spectroscopy, thermal gravimetric analysis, cyclic voltammetry, gel permeation chromatography and elemental analysis. All the polymers showed intense absorption in the visible range and demonstrated suitable ELUMO and EHOMO, which match well with the fullerene-based acceptor. Thus these three polymers were applied as donors and incorporated with PC71BM as active materials in bulk heterojunction polymer solar cells (PSCs). Polymers PBT2F-TT-a and PBT2F-TT are constructed with the same monomers and the latter has a high molecular weight. A notable enhancement in PCE from 3.48% to 4.22% was observed as the molecular weight was increased from 6.79 kDa (PBT2F-TT-a) to 10.36 kDa (PBT2F-TT). The effect of diphenyl ether (DPE) additive on photovoltaic performance of PSCs based on these polymers has been comprehensively investigated by means of atomic force microscopy (AFM), transmission electron microscopy (TEM), alternating current impedance spectrometry (ACIS), space-charge-limited current (SCLC) analysis and short circuit current density -light intensity (JSC-Plight) measurement. As revealed by AFM and TEM measurement, PBT2F-Se:PC71BM blend with DPE exhibited a nanoscale phase separation dominated with fibrillar structures. On the other hand, the charge carrier mobilities of these blend films were greatly increased after the addition of DPE, giving rise to enhanced photovoltaic performances. Furthermore, the dramatic increase in JSC of PBT2F-Se-based devices should also benefit from the well-balanced hole and electron mobilities as revealed by SCLC results. Interestingly, JSC-Plight measurement suggested the weak bimolecular recombination for these devices without and with the addition of DPE. PSCs based on PBT2F-TT-a, PBT2F-TT, and PBT2F-Se showed good power conversion efficiency. Particularly, PBT2F-Se: PC71BM blend with DPE exhibited a good device performance with JSC of 10.75 mA/cm2, VOC of 0.72 V and PCE of 4.18%.
  • 加载中
    1. [1]

      Tang, C. W. Appl. Phys. Lett. 1986, 48, 183.  doi: 10.1063/1.96937

    2. [2]

      Yu, G.; Gao, J.; Hummelen, J. C.; Wudl, F.; Heeger, A. J. Science 1995, 270, 1789.  doi: 10.1126/science.270.5243.1789

    3. [3]

      (a) He, Z. ; Zhong, C. ; Su, S. ; Xu, M. ; Wu, H. ; Cao, Y. Nat. Photon. 2012, 6, 591; (b) Huang, Y. ; Kramer, E. J. ; Heeger, A. J. ; Bazan, G. C. Chem. Rev. 2014, 114, 7006; (c) Zhang, S. ; Ye, L. ; Zhao, W. ; Yang, B. ; Wang, Q. ; Hou, J. Sci. China Chem. 2015, 58, 248; (d) Peng, Q. ; Liu, X. ; Su, D. ; Fu, G. ; Xu, J. ; Dai, L. Adv. Mater. 2011, 23, 4554; (e) Yao, H. ; Ye, L. ; Zhang, H. ; Li, S. ; Zhang, S. ; Hou, J. Chem. Rev. 2016, 116, 7397; (f) Cheng, Y. J. ; Yang, S. H. ; Hsu, C. S. Chem. Rev. 2009, 109, 5868; (g) Qin, R. ; Geng, F. ; Wang, D. ; Yao, X. Chin. J. Org. Chem. 2015, 35, 2583 (in Chinese). (秦瑞平, 耿凡, 王丹丰, 姚小静, 有机化学, 2015, 35, 2583. ); (h) Liu, T. ; Pan, X. ; Meng, X. ; Liu, Y. ; Wei, D. ; Ma, W. ; Huo, L. ; Sun, X. ; Lee, T. H. ; Huang, M. ; Choi, H. ; Kim, J. Y. ; Choy, W. C. H. ; Sun, Y. Adv. Mater. 2017, 29, 1604251.

    4. [4]

      (a) Sun, Y.; Welch, G. C.; Leong, W. L.; Takacs, C. J.; Bazan, G. C.; Heeger, A. J. Nat. Mater. 2012, 11, 44; (b) Xu, S.; Zhou, Z.; Fan, H.; Ren, L.; Liu, F.; Zhu, X.; Russell, T. P. J. Mater. Chem. A 2016, 4, 17354; (c) Sun, Y. M.; Seifter, J.; Huo, L. J.; Yang, Y. L.; Hsu, B. B. Y.; Zhou, H. Q.; Sun, X. B.; Xiao, S.; Jiang, L.; Heeger, A. J. Adv. Energy Mater. 2014, 1400987.

    5. [5]

      (a) Anthony, J. E. Chem. Mater. 2011, 23, 583; (b) Brunetti, F. G.; Gong, X.; Tong, M.; Heeger, A. J.; Wudl, F. Angew. Chem. Int. Ed. 2010, 49, 532; (c) Gao, G.; Zhang, X.; Meng, D.; Zhang, A.; Liu, Y.; Jiang, W.; Sun, Y.; Wang, Z. RSC Adv. 2016, 6, 14027; (d) Liu, T.; Guo, Y.; Yi, Y.; Huo, L.; Xue, X.; Sun, X.; Fu, H.; Xiong, W.; Meng, D.; Wang, Z.; Liu, F.; Russell, T. P.; Sun, Y. Adv. Mater. 2016, 28, 10008; (e) Meng, D.; Sun, D.; Zhong, C.; Liu, T.; Fan, B.; Huo, L.; Li, Y.; Jiang, W.; Choi, H.; Kim, T.; Kim, J. Y.; Sun, Y.; Heeger, A. J. J. Am. Chem. Soc. 2016, 138, 375.

    6. [6]

      (a) Zhou, Y.; Kurosawa, T.; Ma, W.; Guo, Y.; Fang, L.; Vandewal, K.; Diao, Y.; Wang, C.; Yan, Q.; Reinspach, J.; Mei, J.; Appleton, A.; Koleilat, G. I.; Gao, Y.; Mannsfeld, S. C. B.; Salleo, A.; Ade, H.; Zhao, D.; Bao, Z. Adv. Mater. 2014, 26, 3767; (b) Li, Z.; Xu, X.; Zhang, W.; Meng, X.; Ma, W.; Yartsev, A.; Inganäs, O.; Andersson, M. R.; Janssen, R. A. J.; Wang, E. J. Am. Chem. Soc. 2016, 138, 10935.

    7. [7]

      (a) Lin, Y.; Zhao, F.; Wu, Y.; Chen, K.; Xia, Y.; Li, G.; Prasad, S. K. K.; Zhu, J.; Huo, L.; Bin, H.; Zhang, Z. G.; Guo, X.; Zhang, M.; Sun, Y.; Gao, F.; Wei, Z.; Ma, W.; Wang, C.; Hodgkiss, J.; Bo, Z.; Inganäs, O.; Li, Y.; Zhan, X. Adv. Mater. 2017, 29, 1604155; (b) Zhao, J.; Li, Y.; Yang, G.; Jiang, K.; Lin, H.; Ade, H.; Ma, W.; Yan, H. Nat. Energy 2016, 1, 15027; (c) He, Z.; Xiao, B.; Liu, F.; Wu, H.; Yang, Y.; Xiao, S.; Wang, C.; Russell, T. P.; Cao, Y. Nat. Photon. 2015, 9, 174; (d) Li, S.; Ye, L.; Zhao, W.; Zhang, S.; Mukherjee, S.; Ade, H.; Hou, J. Adv. Mater. 2016, 28, 9423; (e) Zhao, W.; Li, S.; Zhang, S.; Liu, X.; Hou, J. Adv Mater. 2017, 29, 1604059; (f) Yang, Y.; Zhang, Z. G.; Bin, H.; Chen, S.; Gao, L.; Xue, L.; Yang, C.; Li, Y. J. Am. Chem. Soc. 2016, 138, 15011.

    8. [8]

      Nguyen, D. T. T.; Kim, T.; Li, Y.; Song, S.; Nguyen, T. L.; Uddin, M. A.; Hwang, S.; Kim, J. Y.; Woo, H. Y. J. Polym. Sci, Part A: Polym. Chem. 2016, 54, 3826.  doi: 10.1002/pola.v54.24

    9. [9]

      (a) Liu, Y.; Zhao, J.; Li, Z.; Mu, C.; Ma, W.; Hu, H.; Jiang, K.; Lin, H.; Ade, H.; Yan, H. Nat. Commun. 2014, 5, 5293; (b) Zhang, S.; Yang, B.; Liu, D.; Zhang, H.; Zhao, W.; Wang, Q.; He, C.; Hou, J. Macromolecules 2016, 49, 120; (c) Stuart, A. C.; Tumbleston, J. R.; Zhou, H.; Li, W.; Liu, S.; Ade, H.; You, W. J. Am. Chem. Soc. 2013, 135, 1806; (d) Hu, H.; Jiang, K.; Yang, G.; Liu, J.; Li, Z.; Lin, H.; Liu, Y.; Zhao, J.; Zhang, J.; Huang, F.; Qu, Y.; Ma, W.; Yan, H. J. Am. Chem. Soc. 2015, 137, 14149; (e) Tang, D.; Liu, Y.; Zhang, Z.; Shu, Q.; Wang, B.; Fan, J.; Song, B. Org. Electron. 2016, 33, 187.

    10. [10]

      (a) Choi, H. ; Ko, S. J. ; Kim, T. ; Morin, P. O. ; Walker, B. ; Lee, B. H. ; Leclerc, M. ; Kim, J. Y. ; Heeger, A. J. Adv. Mater. 2015, 27, 3318; (b) Zhao, C. B. ; Wang, Z. L. ; Zhou, K. ; Ge, H. G. ; Zhang, Q. ; Jin, L. X. ; Wang, W. L. ; Yin, S. W. Acta Chim. Sinica 2016, 74, 251 (in Chinese). (赵蔡斌, 王占领, 周科, 葛红光, 张强, 靳玲侠, 王文亮, 尹世伟, 化学学报, 2016, 74, 251. )

    11. [11]

      Bin, H.; Zhang, Z. G.; Gao, L.; Chen, S.; Zhong, L.; Xue, L.; Yang, C.; Li, Y. J. Am. Chem. Soc. 2016, 138, 4657.  doi: 10.1021/jacs.6b01744

    12. [12]

      (a) Chen, H. Y.; Hou, J.; Zhang, S.; Liang, Y.; Yang, G.; Yang, Y.; Yu, L.; Wu, Y.; Li, G. Nat. Photonics 2009, 3, 649; (b) Lu, L.; Yu, L. Adv. Mater. 2014, 26, 4413; (c) Liang, Y.; Xu, Z.; Xia, J.; Tsai, S. T.; Wu, Y.; Li, G.; Ray, C.; Yu, L. Adv. Mater. 2010, 22, E135.

    13. [13]

      (a) Lee, W. ; Kim, G. H. ; Ko, S. J. ; Yum, S. ; Hwang, S. ; Cho, S. ; Shin, Y. H. ; Kim, J. Y. ; Woo, H. Y. Macromolecules 2014, 47, 1604; (b) Qin, R. ; Li, W. ; Li, C. ; Du, C. ; Veit, C. ; Schleiermacher, H. F. ; Andersson, M. ; Bo, Z. ; Liu, Z. ; Inganäs, O. ; Wuerfel, U. ; Zhang, F. J. Am. Chem. Soc. 2009, 131, 14612; (c) Zhang, C. ; Sun, Y. ; Dai, B. ; Zhang, X. ; Yang, H. ; Lin, B. ; Guo, L. Chin. J. Org. Chem. 2014, 34, 1701 (in Chinese). (张超, 孙莹, 戴斌, 张雪勤, 杨洪, 林保平, 郭玲香, 有机化学, 2014, 34, 1701. ); (d) Liu, Z. ; Xu, F. ; Yan, D. Acta Chim. Sinica. 2014, 72, 171 (in Chinese). (刘震, 徐丰, 严大东, 化学学报, 2014, 72, 171. ); (e) Ye, H. ; Li, W. ; Li, W. Chin. J. Org. Chem. 2012, 32, 266 (in Chinese). (叶怀英, 李文, 李维实, 有机化学, 2012, 32, 266. )

    14. [14]

      (a) Reichenbächer, K.; Süss, H. I.; Hulliger, J. Chem. Soc. Rev. 2005, 34, 22; (b) Lee, W.; Choi, H.; Hwang, S.; Kim, J. Y.; Woo, H. Y. Chem. Eur. J. 2012, 18, 2551; (c) Li, Y.; Lee, T. H.; Park, S. Y.; Uddin, M. A.; Kim, T.; Hwang, S.; Kim, J. Y.; Woo, H. Y. Polym. Chem. 2016, 7, 463; (d) Yao, H.; Yu, R.; Shin, T. J.; Zhang, H.; Zhang, S.; Jang, B.; Uddin, M. A.; Woo, H. Y.; Hou, J. Adv. Energy Mater. 2016, 6, 1600742; (e) Seifter, J.; Sun, Y.; Choi, H.; Lee, B. H.; Nguyen, T. L.; Woo, H. Y.; Heeger A. J. Adv. Mater. 2015, 27, 4989; (f) Gallaher, J. K.; Prasad, S. K. K.; Uddin, M. A.; Kim, T.; Kim, J. Y.; Woo, H. Y.; Hodgkiss, J. M. Energy Environ. Sci. 2015, 8, 2713.

    15. [15]

      Nguyen, T. L.; Choi, H.; Ko, S. J.; Uddin, M. A.; Walker, B.; Yum, S.; Jeong, J. E.; Yun, M. H.; Shin, T. J.; Hwang, S.; Kim, J. Y.; Woo, H. Y. Energy Environ. Sci. 2014, 7, 3040.  doi: 10.1039/C4EE01529K

    16. [16]

      Patra, A.; Bendikov, M. J. Mater. Chem. 2010, 20, 422.  doi: 10.1039/B908983G

    17. [17]

      (a) Lee, J.; Han, A. R.; Kim, J.; Kim, Y.; Oh, J. H.; Yang, C. J. Am. Chem. Soc. 2012, 134, 20713; (b) Kronemeijer, A. J.; Gili, E.; Shahid, M.; Rivnay, J.; Salleo, A.; Heeney, M.; Sirringhaus, H. Adv. Mater. 2012, 24, 1558; (c) Alghamdi, A. A. B.; Watters, D. C.; Yi, H.; Al-Faifi, S.; Almeataq, M. S.; Coles, D.; Kingsley, J.; Lidzey, D. G.; Iraqi, A. J. Mater. Chem. A 2013, 1, 5165.

    18. [18]

      Scharber, M. C.; Mühlbacher, D.; Koppe, M.; Denk, P.; Waldauf, C.; Heeger, A. J.; Brabec, C. J. Adv. Mater. 2006, 18, 789.  doi: 10.1002/(ISSN)1521-4095

    19. [19]

      (a) Chu, T. Y.; Lu, J.; Beaupré, S.; Zhang, Y.; Pouliot, J. R.; Zhou, J.; Najari, A.; Leclerc, M.; Tao, Y. Adv. Funct. Mater. 2012, 22, 2345; (b) Kang, H.; Uddin, M. A.; Lee, C.; Kim, K. H.; Nguyen, T. L.; Lee, W.; Li, Y.; Wang, C.; Woo, H. Y.; Kim, B. J. J. Am. Chem. Soc. 2015, 137, 2359.

    20. [20]

      Yu, D.; Oyewole, O. K.; Kwabi, D.; Tong, T.; Anye, V. C.; Asare, J.; Rwenyagila, E.; Fashina, A.; Akogwu, O.; Du, J.; Soboyejo, W. O. J. Appl. Phys. 2014, 116, 074506.  doi: 10.1063/1.4892393

    21. [21]

      (a) Yao, E. P.; Chen, C. C.; Gao, J.; Liu, Y.; Chen, Q.; Cai, M.; Hsu, W. C.; Hong, Z.; Li, G.; Yang, Y. Sol. Energy Mater. Sol. Cells 2014, 130, 20; (b) Huang, T. Y.; Patra, D.; Hsiao, Y. S.; Chang, S. H.; Wu, C. G.; Ho, K. C.; Chu, C. W. J. Mater. Chem. A 2015, 3, 10512.

    22. [22]

      (a) Kim, Y.; Yeom, H. R.; Kim, J. Y.; Yang, C. Energy Environ. Sci. 2013, 6, 1909; (b) Proctor, C. M.; Kuika, M.; Nguyena, T. Q. Prog. Polym. Sci. 2013, 38, 1941.

    23. [23]

      (a) Zhang, H.; Li, S.; Xu, B.; Yao, H.; Yang, B.; Hou, J. J. Mater. Chem. A 2016, 4, 18043; (b) Cowan, S. R.; Roy, A.; Heeger, A. J. Phys. Rev. B 2010, 82, 245207.

    24. [24]

      Bull, S. R.; Palmer, L. C.; Fry, N. J.; Greenfield, M. A.; Messmore, B. W.; Meade, T. J.; Stupp, S. I. J. Am. Chem. Soc. 2008, 130, 2742.  doi: 10.1021/ja710749q

    25. [25]

      Zhang, W.; Zhang, F.; Tang, R.; Fu, Y.; Wang, X.; Zhuang, X.; He, G.; Feng, X. Org. Lett. 2016, 18, 3618.  doi: 10.1021/acs.orglett.6b01659

    26. [26]

      Uy, R. L.; Yan, L.; Li, W.; You, W. Macromolecules 2014, 47, 2289.  doi: 10.1021/ma5001095

  • 加载中
    1. [1]

      Boyuan HuJian ZhangYulin YangYayu DongJiaqi WangWei WangKaifeng LinDebin Xia . Dual-functional POM@IL complex modulate hole transport layer properties and interfacial charge dynamics for highly efficient and stable perovskite solar cells. Chinese Chemical Letters, 2024, 35(7): 108933-. doi: 10.1016/j.cclet.2023.108933

    2. [2]

      Chen Lu Zefeng Yu Jing Cao . Advancement in porphyrin/phthalocyanine compounds-based perovskite solar cells. Chinese Journal of Structural Chemistry, 2024, 43(3): 100240-100240. doi: 10.1016/j.cjsc.2024.100240

    3. [3]

      Chi Li Peng Gao . Is dipole the only thing that matters for inverted perovskite solar cells?. Chinese Journal of Structural Chemistry, 2024, 43(6): 100324-100324. doi: 10.1016/j.cjsc.2024.100324

    4. [4]

      Kai Han Guohui Dong Ishaaq Saeed Tingting Dong Chenyang Xiao . Boosting bulk charge transport of CuWO4 photoanodes via Cs doping for solar water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100207-100207. doi: 10.1016/j.cjsc.2023.100207

    5. [5]

      Yuqing WangZhemin LiQingjun LuQizhao LiJiaxin LuoChengjie LiYongshu Xie . Solar cells based on doubly concerted companion dyes with the efficiencies modulated by inserting an ethynyl group at different positions. Chinese Chemical Letters, 2024, 35(5): 109093-. doi: 10.1016/j.cclet.2023.109093

    6. [6]

      Kangrong YanZiqiu ShenYanchun HuangBenfang NiuHongzheng ChenChang-Zhi Li . Curing the vulnerable heterointerface via organic-inorganic hybrid hole transporting bilayers for efficient inverted perovskite solar cells. Chinese Chemical Letters, 2024, 35(6): 109516-. doi: 10.1016/j.cclet.2024.109516

    7. [7]

      Shaonan Liu Shuixing Dai Minghua Huang . The impact of ester groups on 1,8-naphthalimide electron transport material in organic solar cells. Chinese Journal of Structural Chemistry, 2024, 43(6): 100277-100277. doi: 10.1016/j.cjsc.2023.100277

    8. [8]

      Bo YangPu-An LinTingwei ZhouXiaojia ZhengBing CaiWen-Hua Zhang . Facile surface regulation for highly efficient and thermally stable perovskite solar cells via chlormequat chloride. Chinese Chemical Letters, 2024, 35(10): 109425-. doi: 10.1016/j.cclet.2023.109425

    9. [9]

      Yikun WangQiaomei ChenShijie LiangDongdong XiaChaowei ZhaoChristopher R. McNeillWeiwei Li . Near-infrared double-cable conjugated polymers based on alkyl linkers with tunable length for single-component organic solar cells. Chinese Chemical Letters, 2024, 35(4): 109164-. doi: 10.1016/j.cclet.2023.109164

    10. [10]

      Xiao ZhuYanbing MoJiawei ChenGaopan LiuYonggang WangXiaoli Dong . A weakly-solvated ether-based electrolyte for fast-charging graphite anode. Chinese Chemical Letters, 2024, 35(8): 109146-. doi: 10.1016/j.cclet.2023.109146

    11. [11]

      Xinyu YuFei WuXianglang SunLinna ZhuBaoyu XiaZhong'an Li . Low-cost dopant-free fluoranthene-based branched hole transporting materials for efficient and stable n-i-p perovskite solar cells. Chinese Chemical Letters, 2024, 35(10): 109821-. doi: 10.1016/j.cclet.2024.109821

    12. [12]

      Xiangan SongShaogang ShenMengyao LuYing WangYong Zhang . Trifluoromethyl enable high-performance single-emitter white organic light-emitting devices based on quinazoline acceptor. Chinese Chemical Letters, 2024, 35(4): 109118-. doi: 10.1016/j.cclet.2023.109118

    13. [13]

      Yingying YanWanhe JiaRui CaiChun Liu . An AIPE-active fluorinated cationic Pt(Ⅱ) complex for efficient detection of picric acid in aqueous media. Chinese Chemical Letters, 2024, 35(5): 108819-. doi: 10.1016/j.cclet.2023.108819

    14. [14]

      Dong-Sheng DengSu-Qin TangYong-Tu YuanDing-Xiong XieZhi-Yuan ZhuYue-Mei HuangYun-Lin Liu . C-F insertion reaction sheds new light on the construction of fluorinated compounds. Chinese Chemical Letters, 2024, 35(8): 109417-. doi: 10.1016/j.cclet.2023.109417

    15. [15]

      Jiayu XuMeng LiBaoxia DongLigang Feng . Fully fluorinated hybrid zeolite imidazole/Prussian blue analogs with combined advantages for efficient oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(6): 108798-. doi: 10.1016/j.cclet.2023.108798

    16. [16]

      Qiuyun LiYannan ZhuYining WangGang QiWen-Juan HaoKelu YanBo Jiang . Catalytic CH activation-initiated transdiannulation: An oxygen transfer route to ring-fluorinated tricyclic γ-lactones. Chinese Chemical Letters, 2024, 35(9): 109494-. doi: 10.1016/j.cclet.2024.109494

    17. [17]

      Lan YangYu LiMou JiangRui ZhouHengjiang CongMinghui YangLei ZhangShenhui LiYunhuang YangMaili LiuXin ZhouZhong-Xing JiangShizhen Chen . Fluorinated [2]rotaxanes as sensitive 19F MRI agents: Threading for higher sensitivity. Chinese Chemical Letters, 2024, 35(10): 109512-. doi: 10.1016/j.cclet.2024.109512

    18. [18]

      Ke-Ai Zhou Lian Huang Xing-Ping Fu Li-Ling Zhang Yu-Ling Wang Qing-Yan Liu . Fluorinated metal-organic framework for methane purification from a ternary CH4/C2H6/C3H8 mixture. Chinese Journal of Structural Chemistry, 2023, 42(11): 100172-100172. doi: 10.1016/j.cjsc.2023.100172

    19. [19]

      Jinli Chen Shouquan Feng Tianqi Yu Yongjin Zou Huan Wen Shibin Yin . Modulating Metal-Support Interaction Between Pt3Ni and Unsaturated WOx to Selectively Regulate the ORR Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100168-100168. doi: 10.1016/j.cjsc.2023.100168

    20. [20]

      Yifei ZhangYuncong XueLaiwei GaoRui LiaoFeng WangFei Wang . Merging non-covalent and covalent crosslinking: En route to single chain nanoparticles. Chinese Chemical Letters, 2024, 35(6): 109217-. doi: 10.1016/j.cclet.2023.109217

Metrics
  • PDF Downloads(8)
  • Abstract views(439)
  • HTML views(40)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return