Citation: Wu Wen-Ting, Zhang Liming, You Shu-Li. Recent Progress on Gold-catalyzed Dearomatization Reactions[J]. Acta Chimica Sinica, ;2017, 75(5): 419-438. doi: 10.6023/A17020049 shu

Recent Progress on Gold-catalyzed Dearomatization Reactions

Figures(31)

  • Homogeneous gold catalysis has experienced rapid development since 2004 and generally exhibited high efficiency and good functional group tolerance. On the other hand, catalytic dearomatization reactions provide a unique and straight approach to the construction of highly functionalized molecules with diverse three-dimensional structures from simple aromatic compounds. In this perspective, recent examples on gold-catalyzed dearomatization reactions are summarized in two main categories: gold-catalyzed rearrangements and gold-catalyzed hydrofunctionalizations of alkynes and allenes. In the first category, intra-and inter-molecular dearomatization reactions were achieved via gold-catalyzed rearrangements of propargylic ester and its derivatives. Although this area is still at its early stage, several outstanding asymmetric examples have been reported by Shi and Toste. In the second category, an array of dearomatization reactions via gold-catalyzed hydrofunctionalizations of alkynes and allenes were presented. All these cases have shown great potentials for convenient and straightforward construction of spiro and/or bridged polycyclic molecules, and some of them have exhibited excellent enantioselectivity. In addition, salient features and proposed mechanisms for these two types of reactions are also described.
  • 加载中
    1. [1]

      Ito, Y.; Sawamura, M.; Hayashi, T. J. Am. Chem. Soc. 1986, 108, 6405.  doi: 10.1021/ja00280a056

    2. [2]

      (a) Teles, J. H.; Brode, S.; Chabanas, M. Angew. Chem., Int. Ed. 1998, 37, 1415; (b) Mizushima, E.; Sato, K.; Hayashi, T.; Tanaka, M. Angew. Chem., Int. Ed. 2002, 41, 4563.

    3. [3]

      For recent books: (a) Toste, F. D.; Michelet, V. Gold Catalysis: An Homogeneous Approach, Imperial College Press, London, 2014; (b) Slaughter, L. M. Homogeneous Gold Catalysis, Springer, 2015; (c) Rappoport, Z.; Liebman, J. F.; Marek, I. The Chemistry of Organogold Compounds, Wiley, Chichester, 2014.

    4. [4]

      For recent reviews: (a) Hashmi, A. S. K. Acc. Chem. Res. 2014, 47, 864; (b) Yeom, H.-S.; Shin, S. Acc. Chem. Res. 2014, 47, 966; (c) Zhang, L. Acc. Chem. Res. 2014, 47, 877; (d) Wang, Y.-M.; Lackner, A. D.; Toste, F. D. Acc. Chem. Res. 2014, 47, 889; (e) Obradors, C.; Echavarren, A. M. Acc. Chem. Res. 2014, 47, 902; (f) Zhang, D.-H.; Tang, X.-Y.; Shi, M. Acc. Chem. Res. 2014, 47, 913; (g) Yang, W.; Hashmi, A. S. K. Chem. Soc. Rev. 2014, 43, 2941; (h) Xie, J.; Pan, C.; Abdukader, A.; Zhu, C. Chem. Soc. Rev. 2014, 43, 5245; (i) Muratore, M. E.; Homs, A.; Obradors, C.; Echavarren, A. M. Chem. Asian J. 2014, 9, 3066; (j) Inamdar, S. M.; Konala, A.; Patil, N. T. Chem. Commun. 2014, 50, 15124; (k) Obradors, C.; Echavarren, A. M. Chem. Commun. 2014, 50, 16; (l) Gu, P.; Xu, Q.; Shi, M. Tetrahedron Lett. 2014, 55, 577; (m) Qian, D.; Zhang, J. Chem. Soc. Rev. 2015, 44, 677; (n) Joost, M.; Amgoune, A.; Bourissou, D. Angew. Chem., Int. Ed. 2015, 54, 15022; (o) Jia, M.; Bandini, M. ACS Catal. 2015, 5, 1638; (p) Debrouwer, W.; Heugebaert, T. S. A.; Roman, B. I.; Stevens, C. V. Adv. Synth. Catal. 2015, 357, 2975; (q) Goodwin, J. A.; Aponick, A. Chem. Commun. 2015, 51, 8730; (r) Dorel, R.; Echavarren, A. M. J. Org. Chem. 2015, 80, 7321; (s) Ranieri, B.; Escofet, I.; Echavarren, A. M. Org. Biomol. Chem. 2015, 13, 7103; (t) Wei, F.; Song, C.; Ma, Y.; Zhou, L.; Tung, C.-H.; Xu, Z. Sci. Bull. 2015, 60, 1479; (u) Liu, L.; Zhang, J. Chem. Soc. Rev. 2016, 45, 506; (v) Zheng, Z.; Wang, Z.; Wang, Y.; Zhang, L. Chem. Soc. Rev. 2016, 45, 4448; (w) Zi, W.; Dean, T. F. Chem. Soc. Rev. 2016, 45, 4567; (x) Li, Y.; Li, W.; Zhang, J. Chem. Eur. J. 2017, 23, 467.

    5. [5]

      (a) Hashmi, A. S. K.; Rudolph, M. Chem. Soc. Rev. 2008, 37, 1766; (b) Alcaide, B.; Almendros, P.; Alonso, J. M. Molecules 2011, 16, 7815; (c) Rudolph, M.; Hashmi, A. S. K. Chem. Soc. Rev. 2012, 41, 2448; (d) Barbour, P. M.; Marholz, L. J.; Chang, L.; Xu, W.; Wang, X. Chem. Lett. 2014, 43, 572; (e) Fensterbank, L.; Malacria, M. Acc. Chem. Res. 2014, 47, 953; (f) Füerstner, A. Angew. Chem., Int. Ed. 2014, 53, 8587; (g) Füerstner, A. Acc. Chem. Res. 2014, 47, 925; (h) Zhang, Y.; Luo, T.; Yang, Z. Nat. Prod. Rep. 2014, 31, 489; (i) Pflästerer, D.; Hashmi, A. S. K. Chem. Soc. Rev. 2016, 45, 1331.

    6. [6]

      Gorin, D. J.; Toste, F. D. Nature 2007, 446, 395.  doi: 10.1038/nature05592

    7. [7]

    8. [8]

    9. [9]

      (a) Krause, N.; Winter, C. Chem. Rev. 2011, 111, 1994; (b) Rudolph, M.; Hashmi, A. S. K. Chem. Commun. 2011, 47, 6536; (c) Gulevich, A. V.; Dudnik, A. S.; Chernyak, N.; Gevorgyan, V. Chem. Rev. 2013, 113, 3084; (d) Qian, D.; Zhang, J. Chem. Rec. 2014, 14, 280; (e) Wei, Y.; Shi, M. ACS Catal. 2016, 2515.

    10. [10]

      Bandini, M. Chem. Soc. Rev. 2011, 40, 1358.  doi: 10.1039/C0CS00041H

    11. [11]

      Zhang, L. J. Am. Chem. Soc. 2005, 127, 16804.  doi: 10.1021/ja056419c

    12. [12]

      Yang, J.-M.; Li, P.-H.; Wei, Y.; Tang, X.-Y.; Shi, M. Chem. Commun. 2016, 52, 346.  doi: 10.1039/C5CC08381H

    13. [13]

      Zi, W.; Wu, H.; Toste, F. D. J. Am. Chem. Soc. 2015, 137, 3225.  doi: 10.1021/jacs.5b00613

    14. [14]

      Zhang, G.; Huang, X.; Li, G.; Zhang, L. J. Am. Chem. Soc. 2008, 130, 1814.  doi: 10.1021/ja077948e

    15. [15]

      Zhang, G.; Zhang, L. J. Am. Chem. Soc. 2008, 130, 12598.  doi: 10.1021/ja804690u

    16. [16]

      Briones, J. F.; Davies, H. M. L. J. Am. Chem. Soc. 2012, 134, 11916.  doi: 10.1021/ja304506g

    17. [17]

      Tokimizu, Y.; Oishi, S.; Fujii, N.; Ohno, H. Org. Lett. 2014, 16, 3138.  doi: 10.1021/ol5012604

    18. [18]

      (a) Nevado, C.; Echavarren, A. M. Synthesis 2005, 167; (b) Kitamura, T. Eur. J. Org. Chem. 2009, 2009, 1111; (d) Yamamoto, Y. Chem. Soc. Rev. 2014, 43, 1575.

    19. [19]

      Ferrer, C.; Echavarren, A. M. Angew. Chem., Int. Ed. 2006, 45, 1105.  doi: 10.1002/(ISSN)1521-3773

    20. [20]

      Ferrer, C.; Amijs, C. H. M.; Echavarren, A. M. Chem. Eur. J. 2007, 13, 1358.  doi: 10.1002/(ISSN)1521-3765

    21. [21]

      Zhang, Y.-Q.; Zhu, D.-Y.; Jiao, Z.-W.; Li, B.-S.; Zhang, F.-M.; Tu, Y.-Q.; Bi, Z. Org. Lett. 2011, 13, 3458.  doi: 10.1021/ol201194n

    22. [22]

      Cheng, B.; Huang, G.; Xu, L.; Xia, Y. Org. Biomol. Chem. 2012, 10, 4417.  doi: 10.1039/c2ob25316j

    23. [23]

      Xu, W.; Wang, W.; Wang, X. Angew. Chem., Int. Ed. 2015, 54, 9546.  doi: 10.1002/anie.v54.33

    24. [24]

      Nishiyama, D.; Ohara, A.; Chiba, H.; Kumagai, H.; Oishi, S.; Fujii, N.; Ohno, H. Org. Lett. 2016, 18, 1670.  doi: 10.1021/acs.orglett.6b00536

    25. [25]

      Zhang, L.; Wang, Y.; Yao, Z. J.; Wang, S.; Yu, Z.-X. J. Am. Chem. Soc. 2015, 137, 13290.  doi: 10.1021/jacs.5b05971

    26. [26]

      Nemoto, T.; Matsuo, N.; Hamada, Y. Adv. Synth. Catal. 2014, 356, 2417.  doi: 10.1002/adsc.v356.11/12

    27. [27]

      Aparece, M. D.; Vadola, P. A. Org. Lett. 2014, 16, 6008.  doi: 10.1021/ol503022h

    28. [28]

      Wu, W.-T.; Xu, R.-Q.; Zhang, L.; You, S.-L. Chem. Sci. 2016, 7, 3427.  doi: 10.1039/C5SC04130A

    29. [29]

      Liu, Y.; Xu, W.; Wang, X. Org. Lett. 2010, 12, 1448.  doi: 10.1021/ol100153h

    30. [30]

      Noey, E. L.; Wang, X.; Houk, K. N. J. Org. Chem. 2011, 76, 3477.  doi: 10.1021/jo200556f

    31. [31]

      Podoll, J. D.; Liu, Y.; Chang, L.; Walls, S.; Wang, W.; Wang, X. Proc. Natl. Acad. Sci. U. S. A. 2013, 110, 15573.  doi: 10.1073/pnas.1310459110

    32. [32]

      Barbour, P. M.; Podoll, J. D.; Marholz, L. J.; Wang, X. Bioorg. Med. Chem. Lett. 2014, 24, 5602.  doi: 10.1016/j.bmcl.2014.10.094

    33. [33]

      Chang, L.; Podoll, J. D.; Wang, W.; Walls, S.; O'Rourke, C. P.; Wang, X. J. Med. Chem. 2014, 57, 3803.  doi: 10.1021/jm500146g

    34. [34]

      Barbour, P. M.; Wang, W.; Chang, L.; Pickard, K. L.; Rais, R.; Slusher, B. S.; Wang, X. Adv. Synth. Catal. 2016, 358, 1482.  doi: 10.1002/adsc.v358.9

    35. [35]

      Cera, G.; Crispino, P.; Monari, M.; Bandini, M. Chem. Commun. 2011, 47, 7803.  doi: 10.1039/c1cc12328a

    36. [36]

      Bandini, M.; Eichholzer, A. Angew. Chem., Int. Ed. 2009, 48, 9533.  doi: 10.1002/anie.200904388

    37. [37]

      Cera, G.; Chiarucci, M.; Bandini, M. Pure Appl. Chem. 2012, 84, 1673.

    38. [38]

      Cera, G.; Chiarucci, M.; Mazzanti, A.; Mancinelli, M.; Bandini, M. Org. Lett. 2012, 14, 1350.  doi: 10.1021/ol300297t

    39. [39]

      Zheng, N.; Chang, Y.-Y.; Zhang, L.-J.; Gong, J.-X.; Yang, Z. Chem. Asian J. 2016, 11, 371.  doi: 10.1002/asia.v11.3

    40. [40]

      Modha, S. G.; Kumar, A.; Vachhani, D. D.; Jacobs, J.; Sharma, S. K.; Parmar, V. S.; Van Meervelt, L.; Van der Eycken, E. V. Angew. Chem., Int. Ed. 2012, 51, 9572.  doi: 10.1002/anie.v51.38

    41. [41]

      Modha, S. G.; Vachhani, D. D.; Jacobs, J.; Van Meervelt, L.; Van der Eycken, E. V. Chem. Commun. 2012, 48, 6550.  doi: 10.1039/c2cc32586a

    42. [42]

      Kumar, A.; Vachhani, D. D.; Modha, S. G.; Sharma, S. K.; Parmar, V. S.; Van der Eycken, E. V. Beilstein J. Org. Chem. 2013, 9, 2097.  doi: 10.3762/bjoc.9.246

    43. [43]

      Tokimizu, Y.; Oishi, S.; Fujii, N.; Ohno, H. Angew. Chem., Int. Ed. 2015, 54, 7862.  doi: 10.1002/anie.201502256

    44. [44]

    45. [45]

      Shibuya, T.; Noguchi, K.; Tanaka, K. Angew. Chem., Int. Ed. 2012, 51, 6219.  doi: 10.1002/anie.201202165

    46. [46]

      Oka, J.; Okamoto, R.; Noguchi, K.; Tanaka, K. Org. Lett. 2015, 17, 676.  doi: 10.1021/ol503698s

    47. [47]

      Baba, T.; Oka, J.; Noguchi, K.; Tanaka, K. Eur. J. Org. Chem. 2015, 2015, 4374.  doi: 10.1002/ejoc.201500486

    48. [48]

      Jia, M.; Cera, G.; Perrotta, D.; Monari, M.; Bandini, M. Chem. Eur. J. 2014, 20, 9875.  doi: 10.1002/chem.201403155

    49. [49]

      Shen, Z.-Q.; Li, X.-X.; Shi, J.-W.; Chen, B.-L.; Chen, Z. Tetrahedron Lett. 2015, 56, 4080.  doi: 10.1016/j.tetlet.2015.05.021

    50. [50]

      Jia, M.; Monari, M.; Yang, Q.-Q.; Bandini, M. Chem. Commun. 2015, 51, 2320.  doi: 10.1039/C4CC08736D

    51. [51]

      Ocello, R.; De Nisi, A.; Jia, M.; Yang, Q.-Q.; Monari, M.; Giacinto, P.; Bottoni, A.; Miscione, G. P.; Bandini, M. Chem. Eur. J. 2015, 21, 18445.  doi: 10.1002/chem.201503598

    52. [52]

      Pirovano, V.; Decataldo, L.; Rossi, E.; Vicente, R. Chem. Commun. 2013, 49, 3594.  doi: 10.1039/c3cc41514g

    53. [53]

      Wang, Y.; Zhang, P.; Liu, Y.; Xia, F.; Zhang, J. Chem. Sci. 2015, 6, 5564.  doi: 10.1039/C5SC01827G

  • 加载中
    1. [1]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    2. [2]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    3. [3]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    4. [4]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    5. [5]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    6. [6]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    7. [7]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    8. [8]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    9. [9]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    10. [10]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    11. [11]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    12. [12]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    13. [13]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

    14. [14]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    15. [15]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    16. [16]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    17. [17]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    18. [18]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    19. [19]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    20. [20]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

Metrics
  • PDF Downloads(53)
  • Abstract views(2291)
  • HTML views(528)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return