Citation: Mu Yi, Jia Falong, Ai Zhihui, Zhang Lizhi. Molecular Oxygen Activation with Nano Zero-valent Iron for Aerobic Degradation of Organic Contaminants and the Performance Enhancement[J]. Acta Chimica Sinica, ;2017, 75(6): 538-543. doi: 10.6023/A17020047 shu

Molecular Oxygen Activation with Nano Zero-valent Iron for Aerobic Degradation of Organic Contaminants and the Performance Enhancement

  • Corresponding author: Ai Zhihui, jennifer.ai@mail.ccnu.edu.cn Zhang Lizhi, zhanglz@mail.ccnu.edu.cn
  • Received Date: 10 February 2017

    Fund Project: the National Key Research and Development Program of China 2016YFA0203000Self-Determined Research Funds of CCNU from the Colleges' Basic Research and Operation of MOE CCNU16A04005National Natural Science Foundation of China 21477044Excellent Doctorial Dissertation Cultivation Grant from Central China Normal University 2016YBZZ031National Natural Science Foundation of China 51472100National Natural Science Foundation of China 21425728National Natural Science Foundation of China 21173093Self-Determined Research Funds of CCNU from the Colleges' Basic Research and Operation of MOE CCNU16A02029National Natural Science Foundation of China 21177048Excellent Doctorial Dissertation Cultivation Grant from Central China Normal University 2015YBZD024

Figures(6)

  • Nano zero-valent iron (nZVI) is a special kind of iron with large specific surface area, strong reduction activity, and the environmental friendliness. nZVI was usually used to reductively degrade organic pollutants, but its long-term performance was poor and the organic pollutants could not be mineralized. Nano zero-valent iron can reductively activate molecular oxygen to generate reactive oxygen species for oxidation or even mineralization of organic pollutants. Recently, we found the core-shell structure dependent aerobic degradation of organic pollutants by nZVI and proposed a new physical insight into the molecular oxygen activation mechanism of the aerobic nZVI process, where the outward electrons transfer from the iron core initiate the two-electron molecular oxygen activation and surface bound ferrous ions on iron oxide shell favor the single-electron molecular oxygen activation. Several strategies have also been proposed to enhance the production of reactive oxidants by nZVI-induced oxygen activation. We confirmed that addition of extra ferrous ions into the nZVI/O2 system could generate more surface bound ferrous ions for significantly enhancing the generation of reactive oxygen species. Meanwhile, the introduction of some inorganic or organic ligands in the aerobic nZVI system could also improve the active oxygen species generation efficiency. Finally main typical environmental factors including of the pH value, coexisting ions, natural organic matter on the organic pollutants degradation with the aerobic nZVI were discussed. By the way, we also investigated the anoxic Cr(Ⅵ) removal with nZVI. It was found the Cr(Ⅵ) removal rate constant was mainly attributed to the reduction of Cr(Ⅵ) by the surface bound Fe(Ⅱ) besides the reduction of Cr(Ⅵ) adsorbed on the iron oxide shell via the electrons transferred from the iron core. We also demonstrated that the presence of oxygen molecule can inhibit Cr(Ⅵ) removal with nZVI, which was attributed to that the oxygen molecular activation could compete with Cr(Ⅵ) for the consumption of surface bond Fe(Ⅱ) and donor electrons transferred from Fe0 core.
  • 加载中
    1. [1]

      Phillips, D. H.; Nooten, T. V.; Bastiaens, L.; Russell, M. I.; Dickson, K.; Plant, S.; Ahad, J. M. E.; Newton, T.; Elliot, T.; Kalin, R. M. Environ. Sci. Technol. 2010, 44, 3861.  doi: 10.1021/es902737t

    2. [2]

      Yin, W.; Wu, J.; Li, P.; Wang, X.; Zhu, N.; Wu, P.; Yang, B. Chem. Eng. J. 2012, 184, 198.  doi: 10.1016/j.cej.2012.01.030

    3. [3]

      Mu, Y.; Ai, Z.; Zhang, L.; Song, F. ACS Appl. Mater. Inter. 2015, 7, 1997.  doi: 10.1021/am507815t

    4. [4]

      Li, X. Q.; Elliott, D. W.; Zhang, W. X. Crit. Rev. Solid State Mater. Sci. 2006, 31, 111.  doi: 10.1080/10408430601057611

    5. [5]

      Ona-Nguema, G.; Morin, G.; Wang, Y.; Foster, A. L.; Juillot, F.; Calas, G.; Brown, G. E. Environ. Sci. Technol. 2010, 44, 5416.  doi: 10.1021/es1000616

    6. [6]

      Joo, S. H.; Feitz, A. J.; Waite, T. D. Environ. Sci. Technol. 2004, 38, 2242.  doi: 10.1021/es035157g

    7. [7]

      Keenan, C. R.; Sedlak, D. L. Environ. Sci. Technol. 2008, 42, 1262.  doi: 10.1021/es7025664

    8. [8]

      Zečević, S.; Dražić, D. M.; Gojković, S. J. Electroanal. Chem. 1989, 265, 179.  doi: 10.1016/0022-0728(89)80188-3

    9. [9]

      Fu, F.; Dionysiou, D. D.; Liu, H. J. Hazard. Mater. 2014, 267, 194.  doi: 10.1016/j.jhazmat.2013.12.062

    10. [10]

      Stumm, W.; Lee, G. F. Ind. Eng. Chem. 1961, 53, 143.  doi: 10.1021/ie50614a030

    11. [11]

      Lu, L.; Ai, Z.; Li, J.; Zheng, Z.; Li, Q.; Zhang, L. Cryst. Growth Des. 2007, 7, 459.  doi: 10.1021/cg060633a

    12. [12]

      Ai, Z.; Gao, Z.; Zhang, L.; He, W.; Yin, J. J. Environ. Sci. Technol. 2013, 47, 5344.  doi: 10.1021/es4005202

    13. [13]

      Keenan, C. R.; Sedlak, D. L. Environ. Sci. Technol. 2008, 42, 6936.  doi: 10.1021/es801438f

    14. [14]

      Lee, H.; Lee, H. J.; Kim, H. E.; Kweon, J.; Lee, B. D.; Lee, C. J. Hazard. Mater. 2014, 265, 201.  doi: 10.1016/j.jhazmat.2013.11.066

    15. [15]

      Ai, Z.; Lu, L.; Li, J.; Zhang, L.; Qiu, J.; Wu, M. J. Phys. Chem. C 2007, 111, 7430.  doi: 10.1021/jp070412v

    16. [16]

      Ai, Z.; Mei, T.; Liu, J.; Li, J.; Jia, F.; Zhang, L.; Qiu, J. J. Phys. Chem. C 2007, 111, 14799.  doi: 10.1021/jp073617c

    17. [17]

      Liu, W.; Ai, Z.; Cao, M.; Zhang, L. Appl. Catal., B 2014, 150-151, 1.  doi: 10.1016/j.apcatb.2013.11.034

    18. [18]

      Pecher, K.; Haderlein, S. B.; Schwarzenbach, R. P. Environ. Sci. Technol. 2002, 36, 1734.  doi: 10.1021/es011191o

    19. [19]

      Amonette, J. E.; Workman, D. J.; Kennedy, D. W.; Fruchter, J. S.; Gorby, Y. A. Environ. Sci. Technol. 2000, 34, 4606.  doi: 10.1021/es9913582

    20. [20]

      Noradoun, C.; Engelmann, M. D.; McLaughlin, M.; Hutcheson, R.; Breen, K.; Paszczynski, A.; Cheng, I. F. Ind. Eng. Chem. Res. 2003, 42, 5024.  doi: 10.1021/ie030076e

    21. [21]

      Huang, Q.; Cao, M.; Ai, Z.; Zhang, L. Appl. Catal., B 2015, 162, 326.
       

    22. [22]

      Lee, C.; Keenan, C. R.; Sedlak, D. L. Environ. Sci. Technol. 2008, 42, 4921.  doi: 10.1021/es800317j

    23. [23]

      Lee, J.; Kim, J.; Choi, W. Environ. Sci. Technol. 2007, 41, 3335.  doi: 10.1021/es062430g

    24. [24]

      Wang, L.; Cao, M.; Ai, Z.; Zhang, L. Environ. Sci. Technol. 2014, 48, 3354.  doi: 10.1021/es404741x

    25. [25]

      Kim, H. H.; Lee, H.; Kim, H. E.; Seo, J.; Hong, S. W.; Lee, J. Y.; Lee, C. Water Res. 2015, 86, 66.  doi: 10.1016/j.watres.2015.06.016

    26. [26]

      Cwiertny, D. M.; Bransfield, S. J.; Roberts, A. L. Environ. Sci. Technol. 2007, 41, 3734.  doi: 10.1021/es062993s

    27. [27]

      Lee, C.; Sedlak, D. L. Environ. Sci. Technol. 2008, 42, 8528.  doi: 10.1021/es801947h

    28. [28]

      Ai, Z.; Jia, F.; Zhang, L. Environ. Chem. 2016, 35, 1977.

    29. [29]

      King, D. W.; Lounsbury, H. A.; Millero, F. J. Environ. Sci. Technol. 1995, 29, 818.  doi: 10.1021/es00003a033

    30. [30]

      Liu, T.; Li, X.; Waite, T. D. Environ. Sci. Technol. 2014, 48, 14564.  doi: 10.1021/es503777a

    31. [31]

      Liu, T.; Li, X.; Waite, T. D. Environ. Sci. Technol. 2013, 47, 7350.  doi: 10.1021/es400362w

    32. [32]

      Liu, Y.; Phenrat, T.; Lowry, G. V. Environ. Sci. Technol. 2007, 41, 7881.  doi: 10.1021/es0711967

    33. [33]

      Wittbrodt, P. R.; Palmer, C. D. Environ. Sci. Technol. 1995, 29, 255.  doi: 10.1021/es00001a033

    34. [34]

      Wang, Z.; Zhang, L.; Zhao, J.; Xing, B. Environ. Sci.-Nano 2016, 3, 240.  doi: 10.1039/C5EN00230C

  • 加载中
    1. [1]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    2. [2]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    3. [3]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    4. [4]

      Jinfeng Chu Yicheng Wang Ji Qi Yulin Liu Yan Li Lan Jin Lei He Yufei Song . Comprehensive Chemical Experiment Design: Convenient Preparation and Characterization of an Oxygen-Bridged Trinuclear Iron(III) Complex. University Chemistry, 2024, 39(7): 299-306. doi: 10.3866/PKU.DXHX202310105

    5. [5]

      Xin Han Zhihao Cheng Jinfeng Zhang Jie Liu Cheng Zhong Wenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 100033-. doi: 10.3866/PKU.WHXB202404023

    6. [6]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    7. [7]

      Pengcheng Yan Peng Wang Jing Huang Zhao Mo Li Xu Yun Chen Yu Zhang Zhichong Qi Hui Xu Henan Li . Engineering Multiple Optimization Strategy on Bismuth Oxyhalide Photoactive Materials for Efficient Photoelectrochemical Applications. Acta Physico-Chimica Sinica, 2025, 41(2): 100014-. doi: 10.3866/PKU.WHXB202309047

    8. [8]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    9. [9]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    10. [10]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    11. [11]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    12. [12]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    13. [13]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

    14. [14]

      Cen Zhou Biqiong Hong Yiting Chen . Application of Electrochemical Techniques in Supramolecular Chemistry. University Chemistry, 2025, 40(3): 308-317. doi: 10.12461/PKU.DXHX202406086

    15. [15]

      Jianjun LIMingjie RENLili ZHANGLingling ZENGHuiling WANGXiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187

    16. [16]

      Yang WANGXiaoqin ZHENGYang LIUKai ZHANGJiahui KOULinbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165

    17. [17]

      Qinjin DAIShan FANPengyang FANXiaoying ZHENGWei DONGMengxue WANGYong ZHANG . Performance of oxygen vacancy-rich V-doped MnO2 for high-performance aqueous zinc ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 453-460. doi: 10.11862/CJIC.20240326

    18. [18]

      Yongjie ZHANGBintong HUANGYueming ZHAI . Research progress of formation mechanism and characterization techniques of protein corona on the surface of nanoparticles. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2318-2334. doi: 10.11862/CJIC.20240247

    19. [19]

      Zijuan LIXuan LÜJiaojiao CHENHaiyang ZHAOShuo SUNZhiwu ZHANGJianlong ZHANGYanling MAJie LIZixian FENGJiahui LIU . Synthesis of visual fluorescence emission CdSe nanocrystals based on ligand regulation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 308-320. doi: 10.11862/CJIC.20240138

    20. [20]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

Metrics
  • PDF Downloads(114)
  • Abstract views(4578)
  • HTML views(1620)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return