Citation: Tang Jing, Tang Lin, Feng Haopeng, Dong Haoran, Zhang Yi, Liu Sishi, Zeng Guangming. Research Progress of Aqueous Pollutants Removal by Sulfidated Nanoscale Zero-valent Iron[J]. Acta Chimica Sinica, ;2017, 75(6): 575-582. doi: 10.6023/A17020045 shu

Research Progress of Aqueous Pollutants Removal by Sulfidated Nanoscale Zero-valent Iron

  • Corresponding author: Tang Lin, tanglin@hnu.edu.cn Zeng Guangming, zgming@hnu.edu.cn
  • Received Date: 8 February 2017

    Fund Project: the National Natural Science Foundation of China 51579096the National Program for Support of Top-Notch Young Professionals of China 2012the National Natural Science Foundation of China 51521006the National Natural Science Foundation of China 51222805the National Natural Science Foundation of China 51508175

Figures(5)

  • Nanoscale zero-valent iron (NZVI), an environmental remediation agent derived from wide range of raw materials, has been extensively applied in the field of remedying polluted water environment such as groundwater and wastewater. Although NZVI possesses some advantages such as excellent reaction activity, low cost and low toxicity, the limitation of in-situ remediation and storage concerning this kind of material has not been completely overcome yet. Among methods to improve the practical application of NZVI in water environment, sulfidation has become a research hotspot over recent decade. This means that the focus of modifying NZVI has shifted from reaction activity to electron selectivity. Most of the preparation methods of sulfidated NZVI belong to the chemical approach. These sulfidated materials have been heavily used to degrade organic pollutants and remove heavy metals in water to test their practical reactivity. Reaction mechanisms of pollutants and sulfidated NZVI in different environmental systems have also been extensively investigated. Hereinto, according to the species of organic pollutants and the reaction conditions, these reaction mechanisms can be roughly divided into three categories, including adsorption, reduction, and oxidation. In recent years, it is noted that sulfidated NZVI has made great progress to enhance the reaction activity and electrons selectivity, though it still has some limitations in the practical application. It is necessary to thoroughly review recent research progress about the reaction activities of sulfidated NZVI and its reaction mechanisms with pollutants in water, because it can clearly figure out new directions towards future development of sulfidated NZVI application. Due to the superior properties of sulfidated zero-valent iron, this material and relevant iron sulfide-based materials are going to belong to the most important functional materials in the field of environmental remediation with promising development prospect.
  • 加载中
    1. [1]

      Zhang, Y.; Zeng, G.; Tang, L.; Huang, D.; Jiang, X.; Chen, Y. Biosens. Bioelectron. 2007, 22, 2121.  doi: 10.1016/j.bios.2006.09.030

    2. [2]

      Tang, L.; Zeng, G.; Shen, G.; Li, Y.; Zhang, Y.; Huang, D. Environ. Sci. Technol. 2008, 42, 1207.  doi: 10.1021/es7024593

    3. [3]

      Tang, L.; Fang, Y.; Pang, Y.; Zeng, G.; Wang, J.; Zhou, Y.; Deng, Y.; Yang, G.; Cai, Y.; Chen, J. Chem. Eng. J. 2014, 254, 302.  doi: 10.1016/j.cej.2014.05.119

    4. [4]

      Tang, L.; Yang, G.; Zeng, G.; Ca, Y.; Li, S.; Zhou, Y.; Pang, Y.; Liu, Y.; Zhang, Y.; Luna, B. Chem. Eng. J. 2014, 239, 114.  doi: 10.1016/j.cej.2013.10.104

    5. [5]

      Li, J.; Qin, H.; Zhang, X.; Guan, X. Acta Chim. Sinica 2017, DOI:10.6023/A17010007.  doi: 10.6023/A17010007
       

    6. [6]

      Chen, H.; Huang, S.; Zhang, Z.; Liu, Y.; Wang, X. Acta Chim. Sinica 2017, DOI:10.6023/A17010039.  doi: 10.6023/A17010039
       

    7. [7]

      Zhou, Q.; Li, J.; Wang, M.; Zhao, D. Crit. Rev. Env. Sci. Tec. 2016, 46, 783.  doi: 10.1080/10643389.2016.1160815

    8. [8]

      Liang, Z.; Wang, Y. Environ. Prot. 2002, 4, 15.  doi: 10.3969/j.issn.1004-6216.2002.02.006

    9. [9]

      Jiemvarangkul, P.; Zhang, W.; Lien, H. L. Chem. Eng. J. 2011, 170, 482.  doi: 10.1016/j.cej.2011.02.065

    10. [10]

      Phenrat, T.; Saleh, N.; Sirk, K.; Tilton, R. D.; Lowry, G. V. Environ. Sci. Technol. 2007, 41, 284.  doi: 10.1021/es061349a

    11. [11]

      Shi, L.; Zhang, X.; Chen, Z. Water Res. 2011, 45, 886.  doi: 10.1016/j.watres.2010.09.025

    12. [12]

      Greenlee, L. F.; Torrey, J. D.; Amaro, R. L.; Shaw, J. M. Environ. Sci. Technol. 2012, 46, 12913.  doi: 10.1021/es303037k

    13. [13]

      Fan, D.; O'Brien Johnson, G.; Tratnyek, P. G.; Johnson, R. L. Environ. Sci. Technol. 2016, 50, 9558.  doi: 10.1021/acs.est.6b02170

    14. [14]

      Fan, D.; O'Carroll, D. M.; Elliott, D. W.; Xiong, Z.; Tratnyek, P. G.; Johnson, R. L.; Garcia, A. N. Remediat. J. 2016, 26, 27.

    15. [15]

      Ma, X.; Gurung, A.; Deng, Y. Sci. Total Environ. 2013, 443, 844.  doi: 10.1016/j.scitotenv.2012.11.073

    16. [16]

      El-Temsah, Y. S.; Joner, E. J. Chemosphere 2012, 89, 76.  doi: 10.1016/j.chemosphere.2012.04.020

    17. [17]

      He, F.; Zhao, D.; Liu, J.; Roberts, C. B. Ind. Eng. Chem. Res. 2007, 46, 29.  doi: 10.1021/ie0610896

    18. [18]

      Liu, Z.; Zhang, F.; Hoekman, S. K.; Liu, T.; Gai, C.; Peng, N. ACS Sustain. Chem. Eng. 2016, 4, 3261.  doi: 10.1021/acssuschemeng.6b00306

    19. [19]

      Shi, L. N.; Zhang, X.; Chen, Z. L. Water Res. 2011, 45, 886.  doi: 10.1016/j.watres.2010.09.025

    20. [20]

      Chen, Z.; Wang, T.; Jin, X.; Chen, Z.; Megharaj, M.; Naidu, R. J. Colloid Interface Sci. 2013, 398, 59.  doi: 10.1016/j.jcis.2013.02.020

    21. [21]

      Wu, Y.; Yang, M.; Hu, S.; Wang, L.; Yao, H. Toxicol. Environ. Chem. 2014, 96, 227.  doi: 10.1080/02772248.2014.931960

    22. [22]

      Krasae, N.; Wantala, K.; Tantriratna, P.; Grisdanurak, N. App. Env. Res. 2014, 36, 15.

    23. [23]

      Ryu, A.; Jeong, S. W.; Jang, A.; Choi, H. Appl. Catal. B-Environ. 2011, 105, 128.  doi: 10.1016/j.apcatb.2011.04.002

    24. [24]

      Xie, Y.; Fang, Z.; Cheng, W.; Tsang, P. E.; Zhao, D. Sci. Total Environ. 2014, 485, 363.
       

    25. [25]

      Shih, Y. H.; Chen, M. Y.; Su, Y. F. Appl. Catal. B-Environ. 2011 105, 24.  doi: 10.1016/j.apcatb.2011.03.024

    26. [26]

      Kim, E. J.; Kim, J. H.; Azad, A. M.; Chang, Y. S. ACS Appl. Mater. Interfaces 2011, 3, 1457.  doi: 10.1021/am200016v

    27. [27]

      Park, S. W.; Kim, S. K.; Kim, J. B.; Choi, S. W.; Inyang, H. I.; Tokunaga, S. Water Air Soil Pollut:Focus. 2006, 6, 97.  doi: 10.1007/s11267-005-9016-z

    28. [28]

      He, F. In Iron Environmental Chemistry and Pollution Control Technology Seminar, Shanghai, 2016, p. 41.

    29. [29]

      Yanlai, H.; Weile, Y. Environ. Sci. Technol. 2016, 50, 12992.  doi: 10.1021/acs.est.6b03997

    30. [30]

      Greenwood, N. N.; Earnshaw, A. Chemistry of the Elements, 2nd ed., Elsevier Butterworth Heinemann, 1997.

    31. [31]

      Kappes, M.; Frankel, G. S.; Sridhar, N.; Carranza, R. M. J. Electrochem. Soc. 2012, 159, C195.  doi: 10.1149/2.085204jes

    32. [32]

      Macdonald, D. D.; Roberts, B.; Hyne, J. B. Corros. Sci. 1978, 18, 411.  doi: 10.1016/S0010-938X(78)80037-7

    33. [33]

      Schmitt, G. Corrosion 1991, 47, 285.  doi: 10.5006/1.3585257

    34. [34]

      Rajajayavel, S. R. C.; Ghoshal, S. Water Res. 2015, 78, 144.  doi: 10.1016/j.watres.2015.04.009

    35. [35]

      Fan, D.; Anitori, R. P.; Tebo, B. M.; Tratnyek, P. G. Environ. Sci. Technol. 2013, 47, 5302.  doi: 10.1021/es304829z

    36. [36]

      Tang, J.; Tang, L.; Feng, H.; Zeng, G.; Dong, H.; Zhang, C.; Huang, B.; Deng Y.; Wang, J.; Zhou, Y. J. Hazard. Mater. 2016, 320, 581.  doi: 10.1016/j.jhazmat.2016.07.042

    37. [37]

      Butler, E. C.; Hayes, K. F. Environ. Sci. Technol. 2001, 35, 3884.  doi: 10.1021/es010620f

    38. [38]

      Zou, Y.; Wang, X.; Khan, A.; Wang, P.; Liu, Y.; Alsaedi, A.; Hayat, T.; Wang, X. Environ. Sci. Technol. 2016, 50, 7290.  doi: 10.1021/acs.est.6b01897

    39. [39]

      Su, Y.; Adeleye, A. S.; Keller, A. A.; Huang, Y.; Dai, C.; Zhou, X.; Zhang, Y. Water Res. 2015, 74, 47.  doi: 10.1016/j.watres.2015.02.004

    40. [40]

      Xu, C.; Zhang, B.; Wang, Y.; Shao, Q.; Zhou, W.; Fan, D.; Bandstra, J. Z.; Shi, Z.; Tratnyek, P. G. Environ. Sci. Technol. 2016, 50, 11879.  doi: 10.1021/acs.est.6b03184

    41. [41]

      Li, D.; Mao, Z.; Zhong, Y.; Huang, W.; Wu, Y.; Peng, P. Water Res. 2016, 103, 1.  doi: 10.1016/j.watres.2016.07.003

    42. [42]

      Du, J.; Bao, J.; Lu, C.; Werner, D. Water Res. 2016, 102, 73.  doi: 10.1016/j.watres.2016.06.009

    43. [43]

      Fan, D.; Anitori, R. P.; Tebo, B. M.; Tratnyek, P. G. Environ. Sci. Technol. 2014, 48, 7409.  doi: 10.1021/es501607s

    44. [44]

      Tang, L.; Tang, J.; Zeng, G.; Yang, G.; Xie, X.; Zhou, Y.; Pang, Y.; Fang, Y.; Wang, J.; Xiong, W. Appl. Surf. Sci. 2015, 333, 220.  doi: 10.1016/j.apsusc.2015.02.025

    45. [45]

      Ling, X.; Li, J.; Zhu, W.; Zhu, Y.; Sun, X.; Shen, J.; Han, W.; Wang, L. Chemosphere 2012, 87, 655.  doi: 10.1016/j.chemosphere.2012.02.002

    46. [46]

      Zhuang, Y.; Ahn, S.; Luthy, R. G. Environ. Sci. Technol. 2010, 44, 8236.  doi: 10.1021/es101601s

    47. [47]

      Ramos, M. A.; Yan, W.; Li, X. Q.; Koel, B. E.; Zhang, W. X. J. Phys. Chem. C 2009, 113, 14591.
       

    48. [48]

      Ai, Z.; Gao, Z.; Zhang, L.; He, W.; Yin, J. J. Environ. Sci. Technol. 2013, 47, 5344.  doi: 10.1021/es4005202

    49. [49]

      Wang, L.; Cao, M.; Ai, Z.; Zhang, L. Environ. Sci. Technol. 2014, 48, 3354.  doi: 10.1021/es404741x

    50. [50]

      Liu, W.; Ai, Z.; Cao, M.; Zhang, L. Appl. Catal. B-Environ. 2014, 150~151, 1.

    51. [51]

      Xiong, Z.; Lai, B.; Yang, P.; Zhou, Y.; Wang, J.; Fang, S. J. Hazard. Mater. 2015, 297, 261.  doi: 10.1016/j.jhazmat.2015.05.006

    52. [52]

      Keenan, C. R.; Sedlak, D. L. Environ. Sci. Technol. 2008, 42, 1262.  doi: 10.1021/es7025664

    53. [53]

      Song, S.; Su, Y.; Adeyemi, S. A.; Zhang, Y. Appl. Catal. B-Environ. 2017, 201, 211.  doi: 10.1016/j.apcatb.2016.07.055

    54. [54]

      Su, Y.; Adeleye, A. S.; Huang, Y.; Zhou, X.; Keller, A. A.; Zhang, Y. Sci. Rep. 2016, 6, 24358.  doi: 10.1038/srep24358

    55. [55]

      Yang, X.; David, M. C. Environ. Sci. Technol. 2010, 44, 8649.  doi: 10.1021/es102451t

    56. [56]

      Ariel, N. G.; Hardiljeet, K. B.; Denis, M. O. Environ. Sci. Technol. 2016, 50, 5243.  doi: 10.1021/acs.est.6b00734

    57. [57]

      David, T.; Dimin, F.; Paul, G. T.; Eun-Ju, K.; Yoon-Seok, C. Environ. Sci. Technol. 2012, 46, 12484.  doi: 10.1021/es303422w

    58. [58]

      Kim, E. J.; Murugesan, K.; Kim, J. H.; Tratnyek, P. G.; Chang, Y. S. Ind. Eng. Chem. Res. 2013, 52, 9343.  doi: 10.1021/ie400165a

    59. [59]

      Eun-Ju, K.; Jae-Hwan, K.; Yoon-Seok, C.; David, T.; Paul, G. T. Environ. Sci. Technol. 2014, 48, 4002.  doi: 10.1021/es405622d

    60. [60]

      Adeleye, A. S.; Stevenson, L. M.; Su, Y.; Nisbet, R. M.; Zhang, Y.; Keller, A. A. Environ. Sci. Technol. 2016, 50, 5597.  doi: 10.1021/acs.est.5b06251

  • 加载中
    1. [1]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    2. [2]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    3. [3]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    4. [4]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    5. [5]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    6. [6]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    7. [7]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    8. [8]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    9. [9]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    10. [10]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    11. [11]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    12. [12]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    13. [13]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    14. [14]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    15. [15]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    16. [16]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    17. [17]

      Huan LIShengyan WANGLong ZhangYue CAOXiaohan YANGZiliang WANGWenjuan ZHUWenlei ZHUYang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088

    18. [18]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    19. [19]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    20. [20]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

Metrics
  • PDF Downloads(76)
  • Abstract views(3651)
  • HTML views(1364)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return