Citation: Chen Haijun, Huang Shuyi, Zhang Zhibin, Liu Yunhai, Wang Xiangke. Synthesis of Functional Nanoscale Zero-Valent Iron Composites for the Application of Radioactive Uranium Enrichment from Environment: A Review[J]. Acta Chimica Sinica, ;2017, 75(6): 560-574. doi: 10.6023/A17010039 shu

Synthesis of Functional Nanoscale Zero-Valent Iron Composites for the Application of Radioactive Uranium Enrichment from Environment: A Review

  • Corresponding author: Liu Yunhai, walton_liu@163.com Wang Xiangke, xkwang@ncepu.edu.cn
  • Received Date: 30 January 2017

    Fund Project: the National Natural Science Foundation of China 21577032the National Natural Science Foundation of China 91326202the Science Challenge Projec JCKY2016212A04

Figures(17)

  • With the widespread using of nuclear energy, the nuclear technology is developed rapidly and the radionuclide pollution such as uranium has become the serious problem for human health. Nanoscale Zero-Valent Iron (nZVI) has become the excellent adsorbent for the removal of uranium ions from environment because of its low cost, easy preparation, high surface-activity and excellent performance for adsorption of uranium. Due to synergistic effect of each monomer, the nZVI nanocomposites have been applied to remove radionuclides and the adsorption capacity of nZVI nanocomposites are improved to a further level. Hence, the preparation of nZVI and its nanocomposites for the efficient removal of radionuclides is one of the hot issues in the field of environmental science. The aim of this review is to summarize and outlook the recent research on the application of nZVI nanocomposites for the efficient removal of radioactive uranium from environment. The preparation of nZVI and its composites, the removal efficiency and removal mechanism has been summarized, and the application of the nZVI nanocomposites in environmental pollution cleanup has also been discussed, expecting for the reference of practical application and future research.
  • 加载中
    1. [1]

      Shi, W.; Yuan, L.; Li, Z.; Lan, J.; Zhao, Y.; Chai, Z. Radio. Chim. Acta 2012, 100, 727.  doi: 10.1524/ract.2012.1961

    2. [2]

      Crane, R. A.; Dickinson, M.; Scott, T. B. Chem. Eng. J. 2015, 262, 319.  doi: 10.1016/j.cej.2014.09.084

    3. [3]

      Bi, Y.; Hyun, S. P.; Kukkadapu, R. K.; Hayes, K. F. Geochim. Cosmochim. Acta 2013, 102, 175.  doi: 10.1016/j.gca.2012.10.032

    4. [4]

      Yue, G. Z.; Gao, R.; Zhao, P. X., Chu, M. F., Shuai, M. B. Acta Chim. Sinica 2016, 74, 657.
       

    5. [5]

      Jang, J.; Dempsey, B. A.; Burgos, W. D. Water Res. 2008, 42, 2269.  doi: 10.1016/j.watres.2007.12.007

    6. [6]

      Yan, S.; Hua, B.; Bao, Z.; Yang, J.; Liu, C.; Deng, B. Environ. Sci. Technol. 2010, 44, 7783.  doi: 10.1021/es9036308

    7. [7]

      Bochud, F. O.; Baechler, S.; Moïse, K. N.; Merlin, N.; Froidevaux, P. Radiat. Meas. 2011, 46, 254.  doi: 10.1016/j.radmeas.2010.11.009

    8. [8]

      Matlock, M. M.; Howerton, B. S.; Atwood, D. A. Water Res. 2002, 36, 4757.  doi: 10.1016/S0043-1354(02)00149-5

    9. [9]

      Meunier, N.; Drogui, P.; Montané, C.; Hausler, R.; Mercier, G.; Blais, J. J. Hazard. Mater. 2006, 137, 581.  doi: 10.1016/j.jhazmat.2006.02.050

    10. [10]

      Azarudeen, R. S.; Subha, R.; Jeyakumar, D.; Burkanudeen, A. R. Sep. Purif. Technol. 2013, 116, 366.  doi: 10.1016/j.seppur.2013.05.043

    11. [11]

      Oehmen, A.; Viegas, R.; Velizarov, S.; Reis, M. A.; Crespo, J. G. Desalination 2006, 199, 405.  doi: 10.1016/j.desal.2006.03.091

    12. [12]

      Li, X.; Du, Y.; Wu, G.; Li, Z.; Li, H.; Sui, H. Chemosphere 2012, 88, 245.  doi: 10.1016/j.chemosphere.2012.03.021

    13. [13]

      Meunier, N.; Drogui, P.; Montané, C.; Hausler, R.; Mercier, G.; Blais, J. J. Hazard. Mater. 2006, 137, 581.  doi: 10.1016/j.jhazmat.2006.02.050

    14. [14]

      Zondervan, E.; Roffel, B. J. Membrane Sci. 2007, 304, 40.  doi: 10.1016/j.memsci.2007.06.041

    15. [15]

      Zou, Y.; Cao, X.; Luo, X.; Liu, Y.; Hua, R.; Liu, Y.; Zhang, Z. J. Radioanal. Nucl. Ch. 2015, 306, 515.  doi: 10.1007/s10967-015-4133-2

    16. [16]

      Sun, Y.; Yang, S.; Chen, Y.; Ding, C.; Cheng, W.; Wang, X. Environ. Sci. Technol. 2015, 49, 4255.  doi: 10.1021/es505590j

    17. [17]

      Sun, Y.; Shao, D.; Chen, C.; Yang, S.; Wang, X. Environ. Sci. Technol. 2013, 47, 9904.  doi: 10.1021/es401174n

    18. [18]

      Sun, Y.; Li, J.; Wang, X. Geochim. Cosmochim. Acta 2014, 140, 621.  doi: 10.1016/j.gca.2014.06.001

    19. [19]

      Li, J.; Chen, C.; Zhang, S.; Wang, X. Environ. Sci. Nano 2014, 1, 488.  doi: 10.1039/C4EN00044G

    20. [20]

      Jin, Z.; Wang, X.; Sun, Y.; Ai, Y.; Wang, X. Environ. Sci. Technol. 2015, 49, 9168.  doi: 10.1021/acs.est.5b02022

    21. [21]

      Zou, Y.; Wang, X.; Khan, A.; Wang, P.; Liu, Y.; Alsaedi, A.; Hayat, T.; Wang, X. Environ. Sci. Technol. 2016, 50, 7290.  doi: 10.1021/acs.est.6b01897

    22. [22]

      Shao, D.; Chen, C.; Wang, X. Chem. Eng. J. 2012, 185, 144.
       

    23. [23]

      Hu, J.; Yang, S.; Wang, X. J. Chem. Technol. Biot. 2012, 87, 673.  doi: 10.1002/jctb.v87.5

    24. [24]

      Wu, X.; Tan, X.; Yang, S.; Wen, T.; Guo, H.; Wang, X.; Xu, A. Water Res. 2013, 47, 4159.  doi: 10.1016/j.watres.2012.11.056

    25. [25]

      Zhao, Y.; Zhao, D.; Chen, C.; Wang, X. J. Colloid. Interface Sci. 2013, 405, 211.  doi: 10.1016/j.jcis.2013.05.004

    26. [26]

      Wen, T.; Wu, X.; Tan, X.; Wang, X.; Xu, A. ACS Appl. Mater. Inter. 2013, 5, 3304.  doi: 10.1021/am4003556

    27. [27]

      Li, Y.; Shi, L.W.; Liu, Z. S.; Yang, G. Q. Acta Chim. Sinica 2012, 70, 683.  doi: 10.3969/j.issn.0251-0790.2012.04.008
       

    28. [28]

      Mukherjee, R.; Kumar, R.; Sinha, A.; Lama, Y.; Saha, A. K. Crit. Rev. Env. Sci. Tec. 2016, 46, 443.  doi: 10.1080/10643389.2015.1103832

    29. [29]

      Sun, Y.; Li, X.; Cao, J.; Zhang, W.; Wang, H. P. Adv. Colloid Interface 2006, 120, 47.  doi: 10.1016/j.cis.2006.03.001

    30. [30]

      Li, S.; Yan, W.; Zhang, W. Green Chem. 2009, 11, 1618.  doi: 10.1039/b913056j

    31. [31]

      Yan, W.; Lien, H.; Koel, B. E.; Zhang, W. Environ. Sci.: Processes & Impacts. 2013, 15, 63.
       

    32. [32]

      Stefaniuk, M.; Oleszczuk, P.; Ok, Y. S. Chem. Eng. J. 2016, 287, 618.  doi: 10.1016/j.cej.2015.11.046

    33. [33]

      Bae, S.; Gim, S.; Kim, H.; Hanna, K. Appl. Catal. B-Environ. 2016, 182, 541.  doi: 10.1016/j.apcatb.2015.10.006

    34. [34]

      Sun, Y.; Li, X.; Cao, J.; Zhang, W.; Wang, H. P. Adv. Colloid Interface 2006, 120, 47.  doi: 10.1016/j.cis.2006.03.001

    35. [35]

      Chen, S.; Hsu, H.; Li, C. J. Nanopart. Res. 2004, 6, 639.  doi: 10.1007/s11051-004-6672-2

    36. [36]

      Yoo, B.; Hernandez, S. C.; Koo, B.; Rheem, Y.; Myung, N. V. Water Sci. Technol. 2007, 55, 149.
       

    37. [37]

      Crane, R. A.; Scott, T. B. J. Hazard Mater. 2012, 211, 112.

    38. [38]

      Machado, S.; Grosso, J. P.; Nouws, H.; Albergaria, J. T.; Delerue-Matos, C. Sci. Total Environ. 2014, 496, 233.  doi: 10.1016/j.scitotenv.2014.07.058

    39. [39]

      Machado, S.; Pinto, S. L.; Grosso, J. P.; Nouws, H.; Albergaria, J. T.; Delerue-Matos, C. Sci. Total Environ. 2013, 445, 1.
       

    40. [40]

      Mystrioti, C.; Xanthopoulou, T. D.; Tsakiridis, P. E.; Papassiopi, N.; Xenidis, A. Sci. Total Environ. 2016, 539, 105.  doi: 10.1016/j.scitotenv.2015.08.091

    41. [41]

      Hoag, G. E.; Collins, J. B.; Holcomb, J. L.; Hoag, J. R.; Nadagouda, M. N.; Varma, R. S. J. Mater. Chem. 2009, 19, 8671.  doi: 10.1039/b909148c

    42. [42]

      Wang, T.; Jin, X.; Chen, Z.; Megharaj, M.; Naidu, R. Sci. Total Environ. 2014, 466, 210.
       

    43. [43]

      Machado, S.; Stawiński, W.; Slonina, P.; Pinto, A. R.; Grosso, J. P.; Nouws, H.; Albergaria, J. T.; Delerue-Matos, C. Sci. Total Environ. 2013, 461, 323.

    44. [44]

      Phenrat, T.; Saleh, N.; Sirk, K.; Tilton, R. D.; Lowry, G. V. Environ. Sci. Technol. 2007, 41, 284.  doi: 10.1021/es061349a

    45. [45]

      Huang, P.; Ye, Z.; Xie, W.; Chen, Q.; Li, J.; Xu, Z.; Yao, M. Water Res. 2013, 47, 4050.  doi: 10.1016/j.watres.2013.01.054

    46. [46]

      Ponder, S. M.; Darab, J. G.; Bucher, J.; Caulder, D.; Craig, I.; Davis, L.; Edelstein, N.; Lukens, W.; Nitsche, H.; Rao, L. Chem. Mater. 2001, 13, 479.  doi: 10.1021/cm000288r

    47. [47]

      Wei, Y.; Wu, S.; Yang, S.; Che, C.; Lien, H.; Huang, D. J. Hazard. Mater. 2012, 211, 373.
       

    48. [48]

      Yan, W.; Herzing, A. A.; Li, X.; Kiely, C. J.; Zhang, W. Environ. Sci. Technol. 2010, 44, 4288.  doi: 10.1021/es100051q

    49. [49]

      Liu, T.; Yang, X.; Wang, Z.; Yan, X. Water Res. 2013, 47, 6691.  doi: 10.1016/j.watres.2013.09.006

    50. [50]

      Kanel, S. R.; Choi, H. Water Sci. Technol. 2007, 55, 157.
       

    51. [51]

      Kanel, S. R.; Goswami, R. R.; Clement, T. P.; Barnett, M. O.; Zhao, D. Environ. Sci. Technol. 2007, 42, 896.
       

    52. [52]

      Jin, X.; Zhuang, Z.; Yu, B.; Chen, Z.; Chen, Z. Carbonhyd. Polym. 2016, 136, 1085.  doi: 10.1016/j.carbpol.2015.10.002

    53. [53]

      Li, J.; Li, H.; Zhu, Y.; Hao, Y.; Sun, X.; Wang, L. Appl. Surf. Sci. 2011, 258, 657.  doi: 10.1016/j.apsusc.2011.07.037

    54. [54]

      Wei, Y.; Wu, S.; Yang, S.; Che, C.; Lien, H.; Huang, D. J. Hazard. Mater. 2012, 211, 373.
       

    55. [55]

      Sirk, K. M.; Saleh, N. B.; Phenrat, T.; Kim, H.; Dufour, B.; Ok, J.; Golas, P. L.; Matyjaszewski, K.; Lowry, G. V.; Tilton, R. D. Environ. Sci. Technol. 2009, 43, 3803.  doi: 10.1021/es803589t

    56. [56]

      Li, Z.; Wang, L.; Yuan, L.; Xiao, C.; Mei, L.; Zheng, L.; Zhang, J.; Yang, J.; Zhao, Y.; Zhu, Z. J. Hazard. Mater. 2015, 290, 26.  doi: 10.1016/j.jhazmat.2015.02.028

    57. [57]

      Popescu Hoştuc, I.; Filip, P.; Humelnicu, D.; Humelnicu, I.; Scott, T. B.; Crane, R. A. J. Nucl. Mater. 2013, 443, 250.  doi: 10.1016/j.jnucmat.2013.07.018

    58. [58]

      Liu, M.; Wang, Y.; Chen, L.; Zhang, Y.; Lin, Z. ACS Appl. Mater. Inter. 2015, 7, 7961.  doi: 10.1021/am509184e

    59. [59]

      Jiang, Z.; Lv, L.; Zhang, W.; Du, Q.; Pan, B.; Yang, L.; Zhang, Q. Water Res. 2011, 45, 2191.  doi: 10.1016/j.watres.2011.01.005

    60. [60]

      Xiao, J.; Gao, B.; Yue, Q.; Sun, Y.; Kong, J.; Gao, Y.; Li, Q. J. Taiwan. Inst. Chem. E 2015, 55, 152.  doi: 10.1016/j.jtice.2015.04.010

    61. [61]

      Xiao, J.; Gao, B.; Yue, Q.; Gao, Y.; Li, Q. Chem. Eng. J. 2015, 262, 1226.  doi: 10.1016/j.cej.2014.10.080

    62. [62]

      Baikousi, M.; Georgiou, Y.; Daikopoulos, C.; Bourlinos, A. B.; Filip, J.; Zbořil, R.; Deligiannakis, Y.; Karakassides, M. A. Carbon 2015, 93, 636.  doi: 10.1016/j.carbon.2015.05.081

    63. [63]

      Qiu, X.; Fang, Z.; Liang, B.; Gu, F.; Xu, Z. J. Hazard. Mater. 2011, 193, 70.  doi: 10.1016/j.jhazmat.2011.07.024

    64. [64]

      Sheng, G.; Alsaedi, A.; Shammakh, W.; Monaquel, S.; Sheng, J.; Wang, X.; Li, H.; Huang, Y. Carbon 2016, 99, 123.  doi: 10.1016/j.carbon.2015.12.013

    65. [65]

      Li, J.; Chen, C.; Zhang, R.; Wang, X. Chem. Asian J. 2015, 10, 1410.  doi: 10.1002/asia.201500242

    66. [66]

      Huang, G. J.; Chen, Z. G.; Li, M. D.; Yang, B. Acta Chim. Sinica 2016, 74, 789.  doi: 10.11862/CJIC.2016.117
       

    67. [67]

      Zhao, D. M.; Li, Z. W.; Liu, L. D. Acta Chim. Sinica 2014, 72, 185.
       

    68. [68]

      Lai, C. W.; Sun, Y.; Yang, H. Acta Chim. Sinica 2013, 71, 1201.  doi: 10.3866/PKU.WHXB201303202
       

    69. [69]

       

    70. [70]

      Chen, Z.; Wang, T.; Jin, X.; Chen, Z.; Megharaj, M.; Naidu, R. J. Colloid Interface Sci. 2013, 398, 59.  doi: 10.1016/j.jcis.2013.02.020

    71. [71]

      Kim, S. A.; Kamala-Kannan, S.; Lee, K.; Park, Y.; Shea, P. J.; Lee, W.; Kim, H.; Oh, B. Chem. Eng. J. 2013, 217, 54.  doi: 10.1016/j.cej.2012.11.097

    72. [72]

      Bhowmick, S.; Chakraborty, S.; Mondal, P.; Van Renterghem, W.; Van den Berghe, S.; Roman-Ross, G.; Chatterjee, D.; Iglesias, M. Chem. Eng. J. 2014, 243, 14.  doi: 10.1016/j.cej.2013.12.049

    73. [73]

      Zhang, Y.; Li, Y.; Li, J.; Hu, L.; Zheng, X. Chem. Eng. J. 2011, 171, 526.  doi: 10.1016/j.cej.2011.04.022

    74. [74]

      Li, Y.; Zhang, Y.; Li, J.; Sheng, G.; Zheng, X. Chemosphere 2013, 92, 368.  doi: 10.1016/j.chemosphere.2013.01.030

    75. [75]

      Zhang, Y.; Li, Y.; Zheng, X. Sci. Total Environ. 2011, 409, 625.  doi: 10.1016/j.scitotenv.2010.10.015

    76. [76]

      Li, Y.; Zhang, Y.; Li, J.; Zheng, X. Environ. Pollut. 2011, 159, 3744.  doi: 10.1016/j.envpol.2011.07.016

    77. [77]

      Yuan, N.; Zhang, G.; Guo, S.; Wan, Z. Ultrason. Sonochem. 2016, 28, 62.  doi: 10.1016/j.ultsonch.2015.06.029

    78. [78]

      Chrysochoou, M.; Johnston, C. P.; Dahal, G. J. Hazard. Mater. 2012, 201, 33.
       

    79. [79]

      Li, Y.; Cheng, W.; Sheng, G.; Li, J.; Dong, H.; Chen, Y.; Zhu, L. Appl. Catal. B Environ. 2015, 174, 329.
       

    80. [80]

      Lin, Y.; Chen, Z.; Chen, Z.; Megharaj, M.; Naidu, R. Appl. Clay Sci. 2014, 93, 56.

    81. [81]

      Chen, Z.; Jin, X.; Chen, Z.; Megharaj, M.; Naidu, R. J. Colloid. Interf. Sci. 2011, 363, 601.  doi: 10.1016/j.jcis.2011.07.057

    82. [82]

      Kanel, S. R.; Choi, H. Water Sci. Technol. 2007, 55, 157.
       

    83. [83]

      Xiao, J.; Gao, B.; Yue, Q.; Gao, Y.; Li, Q. Chem. Eng. J. 2015, 262, 1226.  doi: 10.1016/j.cej.2014.10.080

    84. [84]

      Kanel, S. R.; Goswami, R. R.; Clement, T. P.; Barnett, M. O.; Zhao, D. Environ. Sci. Technol. 2007, 42, 896.
       

    85. [85]

      Lee, Y.; Kim, C.; Lee, J.; Shin, H.; Yang, J. Desalin. Water Treat. 2009, 10, 33.  doi: 10.5004/dwt.2009.722

    86. [86]

      Dong, H.; Lo, I. M. C. Water Res. 2013, 47, 2489.  doi: 10.1016/j.watres.2013.02.022

    87. [87]

      Liu, Q.; Bei, Y.; Zhou, F. Cent. Eur. J. Chem. 2009, 7, 79.
       

    88. [88]

      Su, Y.; Adeleye, A. S.; Huang, Y.; Sun, X.; Dai, C.; Zhou, X.; Zhang, Y.; Keller, A. A. Water Res. 2014, 63, 102.  doi: 10.1016/j.watres.2014.06.008

    89. [89]

      Li, J.; Chen, C.; Zhang, R.; Wang, X. Chem. Asian J. 2015, 10, 1410.  doi: 10.1002/asia.201500242

    90. [90]

      Sheng, G.; Alsaedi, A.; Shammakh, W.; Monaquel, S.; Sheng, J.; Wang, X.; Li, H.; Huang, Y. Carbon 2016, 99, 123.  doi: 10.1016/j.carbon.2015.12.013

    91. [91]

      Wang, Q.; Qian, H.; Yang, Y.; Zhang, Z.; Naman, C.; Xu, X. J. Contam. Hydrol. 2010, 114, 35.  doi: 10.1016/j.jconhyd.2010.02.006

    92. [92]

      Hoch, L. B.; Mack, E. J.; Hydutsky, B. W.; Hershman, J. M.; Skluzacek, J. M.; Mallouk, T. E. Environ. Sci. Technol. 2008, 42, 2600.  doi: 10.1021/es702589u

    93. [93]

      Xiao, J.; Gao, B.; Yue, Q.; Gao, Y.; Li, Q. Chem. Eng. J. 2015, 262, 1226.  doi: 10.1016/j.cej.2014.10.080

    94. [94]

      Xiao, J.; Gao, B.; Yue, Q.; Sun, Y.; Kong, J.; Gao, Y.; Li, Q. J. Taiwan. Inst. Chem. E 2015, 55, 152.  doi: 10.1016/j.jtice.2015.04.010

    95. [95]

      Shu, H.; Chang, M.; Chen, C.; Chen, P. J. Hazard. Mater. 2010, 184, 499.  doi: 10.1016/j.jhazmat.2010.08.064

    96. [96]

      Sun, Y.; Ding, C.; Cheng, W.; Wang, X. J. Hazard. Mater. 2014, 280, 399.  doi: 10.1016/j.jhazmat.2014.08.023

    97. [97]

      Cao, X. Y.; Li, L.; Chen, H. Acta Chim. Sinica 2010, 68, 1461.
       

    98. [98]

      Crane, R. A.; Scott, T. J. Nanopart. Res. 2014, 16, 1.

    99. [99]

      Wang, L. P.; Wang, Y. P. Acta Chim. Sinica 2007, 65, 737.  doi: 10.3321/j.issn:0567-7351.2007.08.015
       

    100. [100]

      Sheng, G.; Shao, X.; Li, Y.; Li, J.; Dong, H.; Cheng, W.; Gao, X.; Huang, Y. J. Phys. Chem. A 2014, 118, 2952.  doi: 10.1021/jp412404w

    101. [101]

      Xu, J.; Li, Y.; Jing, C.; Zhang, H.; Ning, Y. J. Radioanal. Nucl. Ch. 2014, 299, 329.  doi: 10.1007/s10967-013-2779-1

    102. [102]

      Sheng, G.; Yang, P.; Tang, Y.; Hu, Q.; Li, H.; Ren, X.; Hu, B.; Wang, X.; Huang, Y. Appl. Catal. B-Environ. 2016, 193, 189.  doi: 10.1016/j.apcatb.2016.04.035

    103. [103]

      Hu, B.; Ye, F.; Ren, X.; Zhao, D.; Sheng, G.; Li, H.; Ma, J.; Wang, X.; Huang, Y. Environ. Sci. Nano 2016, 3, 1460.  doi: 10.1039/C6EN00421K

    104. [104]

      O Carroll, D.; Sleep, B.; Krol, M.; Boparai, H.; Kocur, C. Adv. Water Res. 2013, 51, 104.  doi: 10.1016/j.advwatres.2012.02.005

    105. [105]

      Li, X.; Zhang, M.; Liu, Y.; Li, X.; Liu, Y.; Hua, R.; He, C. Water Qual. Expo. Health. 2013, 5, 31.  doi: 10.1007/s12403-013-0084-4

    106. [106]

      Zhang, Z.; Liu, J.; Cao, X.; Luo, X.; Hua, R.; Liu, Y.; Yu, X.; He, L.; Liu, Y. J. Hazard. Mater. 2015, 300, 633.  doi: 10.1016/j.jhazmat.2015.07.058

    107. [107]

      Nurmi, J. T.; Tratnyek, P. G.; Sarathy, V.; Baer, D. R.; Amonette, J. E.; Pecher, K.; Wang, C.; Linehan, J. C.; Matson, D. W.; Penn, R. L. Environ. Sci. Technol. 2005, 39, 1221.  doi: 10.1021/es049190u

    108. [108]

      Zhang, W. J. Nanopart. Res. 2003, 5, 323.  doi: 10.1023/A:1025520116015

    109. [109]

      Wang, C.; Zhang, W. Environ. Sci. Technol. 1997, 31, 2154.  doi: 10.1021/es970039c

    110. [110]

      Yan, S.; Hua, B.; Bao, Z.; Yang, J.; Liu, C.; Deng, B. Environ. Sci. Technol. 2010, 44, 7783.  doi: 10.1021/es9036308

    111. [111]

      Dror, I.; Jacov, O. M.; Cortis, A.; Berkowitz, B. ACS Appl. Mater. Inter. 2012, 4, 3416.  doi: 10.1021/am300402q

    112. [112]

      Li, Y.; Li, J.; Zhang, Y. J. Hazard. Mater. 2012, 227, 211.
       

    113. [113]

      Liu, D. Q.; Liu, S. R.; Wang, C. F. J. Synthetic Crystals. 2016, 45, 1328.
       

    114. [114]

      Gao, F.; Zhang, W. M.; Guo, Y. D. China Ceramics. 2015, 51, 10.
       

    115. [115]

      Ding, C.; Cheng, W.; Sun, Y.; Wang, X. Geochim. Cosmochim. Acta 2015, 165, 86.  doi: 10.1016/j.gca.2015.05.036

    116. [116]

      Ling, L.; Zhang, W. J. Am. Chem. Soc. 2015, 137, 2788.  doi: 10.1021/ja510488r

    117. [117]

      Bai, B.; Fang, Y.; Gan, Q.; Yang, Y.; Yuan, L.; Feng, W. Chin. J. Chem. 2015, 33, 361.  doi: 10.1002/cjoc.201400899

  • 加载中
    1. [1]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    2. [2]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    3. [3]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    4. [4]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    5. [5]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    6. [6]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    7. [7]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    8. [8]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    9. [9]

      Shuanglin TIANTinghong GAOYutao LIUQian CHENQuan XIEQingquan XIAOYongchao LIANG . First-principles study of adsorption of Cl2 and CO gas molecules by transition metal-doped g-GaN. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1189-1200. doi: 10.11862/CJIC.20230482

    10. [10]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    11. [11]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    12. [12]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    13. [13]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    14. [14]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    15. [15]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    16. [16]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    17. [17]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    18. [18]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    19. [19]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    20. [20]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

Metrics
  • PDF Downloads(13)
  • Abstract views(1843)
  • HTML views(244)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return