Citation: Yi Yunqiang, Wu Juan, Fang Zhanqiang. Identification Influence Mechanism of Humic Acid in the Degradation of Decabromodiphenyl Ether by the BC@Ni/Fe Nanoparticles[J]. Acta Chimica Sinica, ;2017, 75(6): 629-636. doi: 10.6023/A17010018 shu

Identification Influence Mechanism of Humic Acid in the Degradation of Decabromodiphenyl Ether by the BC@Ni/Fe Nanoparticles

Figures(7)

  • The influence mechanism of natural organic matter (NOM) on the removal of contaminant by iron-based nanomaterials remains controversial. In this study, the effect of humic acid (representing NOM) on the degradation of decabromodiphenyl ether (BDE209) by biochar supported Ni/Fe nanoparticles (BC@Ni/Fe) were investigated, which indicated that the removal of BDE209 by BC@Ni/Fe was inhibited in the presence of HA, and with the increase of HA concentration, the inhibitory effect showed more significant. The interaction between HA and BC@Ni/Fe shown that HA was quickly adsorbed on the BC@Ni/Fe. The results of the Zeta potential and sedimentation experiment of BC@Ni/Fe showed that the stability and surface charge of BC@Ni/Fe were effectively improved with the increase of HA concentration, indicating that the inhibitory effect of HA in the debromination of BDE209 by BC@Ni/Fe was not through inhibiting the performance of nanoparticles by HA. The corrosion capacity of BC@Ni/Fe decreased with the increase of HA, which did positively correlate with the effect of HA on the reactivity of BC@Ni/Fe in the removal of BDE209. Additionally, those typical quinone compounds in HA (lawsone and AQDS), which have the electron transfer function, did not serve as an electron transfer medium to directly participating in the reaction process, on the contrary, those compounds did adversely effect on the removal of BDE209. In the coexisting system of HA and BDE209, the equilibrium adsorption capacity of HA on BC@Ni/Fe was 4.75 mg/g. Conversely, the adsorption quantities of BDE209 on BC@Ni/Fe in the absence of HA was 0.31 mg/g, which was about 1.3 times higher than that of in the presence of HA (the adsorption quantities of BDE209 was 0.23 mg/g). Moreover, in the coexistent system of HA and BDE209, the kinetic rate constants for the adsorption of HA was 0.1854 min-1, which was approximately 45 times greater than that of BDE209 (0.0041 min-1). It was shown from the analyzed results that the adsorption rate of HA on BC@Ni/Fe was much greater than that of BDE209. Therefore, that is to say, HA could be preferentially adsorbed onto the surface of BC@Ni/Fe. The adsorbed HA coated on the surface of BC@Ni/Fe occupied the active sites, which hindered the nanoparticles to contact with H2O, reduced the corrosion of Fe0, thus inhibited the removal of BDE209.
  • 加载中
    1. [1]

      Cheng, Z. N.; Wang, Y.; Wang, S. R.; Luo, C. L.; Li, J.; Chaemfa, C.; Jiang, H. Y.; Zhang, G. Environ. Pollut. 2014, 191, 126.  doi: 10.1016/j.envpol.2014.04.025

    2. [2]

      Labadie, P.; Tlili, K.; Alliot, F.; Bourges, C.; Desportes, A.; Chevreuil, M. Anal. Bioanal. Chem. 2010, 396, 865.  doi: 10.1007/s00216-009-3267-x

    3. [3]

      Leal, J. F.; Esteves, V. I.; Santos, E. B. H. Environ. Sci. Technol. 2013, 47, 14010.  doi: 10.1021/es4035254

    4. [4]

      Li, J. X.; Qin, H. J.; Zhang, X. Y.; Guan, X. H. Acta Chim. Sinica 2017, 75, 544(in Chinese).
       

    5. [5]

      Shih, Y. H.; Tai, Y. T. Chemosphere 2010, 78, 200.
       

    6. [6]

      Lin, Y. M.; Chen, Z. X.; Chen, Z. L.; Megharaj, M.; Naidu, R. Appl. Clay Sci. 2014, 93, 56.
       

    7. [7]

      Zhang, X.; Lin, S.; Lu, X. Q.; Chen, Z. L. Chem. Eng. J. 2010, 163, 243.  doi: 10.1016/j.cej.2010.07.056

    8. [8]

      Li, A.; Tai, C.; Zhao, Z. S.; Wang, Y. W.; Zhang, Q. H.; Jiang, G. B.; Hu, J. T. Environ. Sci. Technol. 2007, 41, 6841.  doi: 10.1021/es070769c

    9. [9]

      Wu, X. Q.; Yang, Q.; Xu, D. C.; Zhong, Y.; Luo, K.; Li, X. M.; Chen, H. B.; Zeng, G. M. Ind. Eng. Chem. Res. 2013, 52, 12574.  doi: 10.1021/ie4009524

    10. [10]

      Luo, L.; Luo, L. P.; Cui, X.; Wu, B.; Hou, J.; Xun, B.; Xu, X.; Chen, Y. J. Hazard. Mater. 2011, 185, 639.  doi: 10.1016/j.jhazmat.2010.09.066

    11. [11]

      Wang, X. L.; Xing, B. S. Environ. Sci. Technol. 2007, 41, 8342.  doi: 10.1021/es071290n

    12. [12]

      Zhou, Y.; Gao, B.; Zimmerman, A. R.; Chen, H.; Zhang, M.; Cao, X. Bioresour. Technol. 2014, 152, 538.  doi: 10.1016/j.biortech.2013.11.021

    13. [13]

      Yao, Y.; Gao, B.; Chen, J. J.; Zhang, M.; Inyang, M.; Li, Y. C.; Alva, A.; Yang, L. Y. Bioresour. Technol. 2013, 138, 8.  doi: 10.1016/j.biortech.2013.03.057

    14. [14]

      Devi, P.; Saroha, A. K. Bioresour. Technol. 2014, 169, 525.  doi: 10.1016/j.biortech.2014.07.062

    15. [15]

      Su, H. J.; Fang, Z. Q.; Tsang, P. E.; Fang, J. Z.; Zhao, D. Y. Environ. Pollut. 2016, 214, 94.  doi: 10.1016/j.envpol.2016.03.072

    16. [16]

      Devi, P.; Saroha, A. K. Chem. Eng. J. 2015, 271, 195.  doi: 10.1016/j.cej.2015.02.087

    17. [17]

      Wu, J.; Yi, Y. Q.; Li, Y. Q.; Fang, Z. Q.; Tsang, P. E. J. Hazard. Mater. 2016, 320, 341.  doi: 10.1016/j.jhazmat.2016.08.049

    18. [18]

      Wang, Y. J.; Xiao, H. L.; Wang, F. Sciences in Cold and Arid Regions 2009, 1, 0372.
       

    19. [19]

      Smith, D. S.; Wu, F. C. Appl. Geochem. 2007, 22, 1567.  doi: 10.1016/j.apgeochem.2007.03.019

    20. [20]

      Tan, L.; Liang, B.; Fang, Z. Q.; Xie, Y. Y.; Tsang, E. P. J. Nanopart. Res. 2014, 162, 786.
       

    21. [21]

      Tratnyek, P. G.; Scherer, M. M.; Deng, B. L.; Hu, S. D. Water Res. 2001, 35, 4435.  doi: 10.1016/S0043-1354(01)00165-8

    22. [22]

      Doong, R. N.; Lai, Y. J. Water Res. 2005, 39, 2309.  doi: 10.1016/j.watres.2005.04.036

    23. [23]

      Kang, S. H.; Choi, W. Y. Environ. Sci. Technol. 2009, 43, 878.  doi: 10.1021/es801705f

    24. [24]

      Fang, Z. Q.; Qiu, X. H.; Chen, J. H.; Qiu, X. Q. J. Hazard. Mater. 2011, 185, 958.  doi: 10.1016/j.jhazmat.2010.09.113

    25. [25]

      Giasuddin, A. M.; Kanel, S.; Choi, H. Environ. Sci. Technol. 2007, 41, 2022.  doi: 10.1021/es0616534

    26. [26]

      Bokare, A. D.; Chikate, R. C.; Rode, C. V.; Paknikar, K. M. Appl. Catal., B 2008, 79, 270.  doi: 10.1016/j.apcatb.2007.10.033

    27. [27]

      Dong, H. R.; Ahmad, K.; Zeng, G. M.; Li, Z. W.; Chen, G. Q.; He, Q.; Xie, Y. K.; Wu, Y. N.; Zhao, F.; Zeng, Y. L. Environ. Pollut. 2016, 211, 363.  doi: 10.1016/j.envpol.2016.01.017

    28. [28]

      Xie, Y. Y.; Fang, Z. Q.; Cheng, W.; Tsang, P. E.; Zhao, D. Y. Sci. Total Environ. 2014, 485, 363.
       

    29. [29]

      Xie, Y. Y.; Fang, Z. Q.; Qiu, X. H.; Tsang, E. T.; Liang, B. Chemosphere 2014, 108, 433.  doi: 10.1016/j.chemosphere.2014.01.076

    30. [30]

      Su, H. J.; Fang, Z. Q.; Tsang, P. E.; Zheng, L. C.; Fang, J. Z.; Fang, J. Z.; Zhao, D. Y. J. Hazard. Mater. 2016, 138, 533.

    31. [31]

      Xie, L.; Shang, C. Environ. Sci. Technol. 2005, 39, 1092.  doi: 10.1021/es049027z

    32. [32]

      Zhang, Z.; Cissoko, N.; Wo, J. J.; Xu, X. H. J. Hazard. Mater. 2009, 165, 78.  doi: 10.1016/j.jhazmat.2008.09.080

    33. [33]

      Choi, H.; Al-Abed, S. R.; Agarwal, S.; Dionysiou, D. D. Chem. Mater. 2008, 20, 3649.  doi: 10.1021/cm8003613

    34. [34]

      Zhuang, Y.; Ahn, S.; Seyfferth, A. L.; Yoko, M. S.; Scott, F.; Richard, G. L. Environ. Sci. Technol. 2011, 45, 4896.  doi: 10.1021/es104312h

    35. [35]

      Zhang, Z.; Cissoko, N.; Wo, J. J.; Xu, X. H. J. Hazard. Mater. 2010, 182, 252.  doi: 10.1016/j.jhazmat.2010.06.022

  • 加载中
    1. [1]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    2. [2]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    3. [3]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    4. [4]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    5. [5]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    6. [6]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    7. [7]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    8. [8]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    9. [9]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    10. [10]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    11. [11]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    12. [12]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    13. [13]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    14. [14]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    15. [15]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    16. [16]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    17. [17]

      Huan LIShengyan WANGLong ZhangYue CAOXiaohan YANGZiliang WANGWenjuan ZHUWenlei ZHUYang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088

    18. [18]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

    19. [19]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    20. [20]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

Metrics
  • PDF Downloads(2)
  • Abstract views(632)
  • HTML views(107)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return