Citation: Chen Fangyuan, Qu Ning, Wu Qunyan, Zhang Hongxing, Shi Weiqun, Pan Qingjiang. Structures and Uranium-Uranium Multiple Bond of Binuclear Divalent Uranium Complex of Pyrrolic Schiff-base Macrocycle: a Relativistic DFT Probe[J]. Acta Chimica Sinica, ;2017, 75(5): 457-463. doi: 10.6023/A17010008 shu

Structures and Uranium-Uranium Multiple Bond of Binuclear Divalent Uranium Complex of Pyrrolic Schiff-base Macrocycle: a Relativistic DFT Probe

  • Corresponding author: Shi Weiqun, shiwq@ihep.ac.cn Pan Qingjiang, panqjitc@163.com
  • Received Date: 9 January 2017

    Fund Project: the National Natural Science Foundation of China 21273063the National Natural Science Foundation of China 21477130

Figures(5)

  • Although attempts to synthesize divalent uranium molecules were begun three decades ago, molecular U(Ⅱ) species isolable in solution have been not achieved until recent years. In 2013, Evans and co-workers synthesized the first U(Ⅱ) complex, [U(Cp')3]·[K(2, 2, 2-cryptand)] (Cp'=C5H4SiMe3) via flash reduction, that was suitable for X-ray crystal diffraction characterization. A year later, the group of Meyer obtained another divalent uranium complex, [U((Ad, MeArO)3mes)]·[K(2, 2, 2-cryptand)] employing their particularly interesting tris(aryloxide) arene ligand. The 5f36d1 and 5f4 ground states were assigned to these two complexes, respectively, by the jointed experimental/theoretical studies. It was demonstrated that the ligand significantly affect the nature of the ground state of divalent uranium complex by tuning the energetic separation of the 5f and 6d orbitals. Therefore, careful selection of ligand makes it possible to have access to +Ⅱ oxidation state of uranium and prepare new U complex. A flexible octadentate polypyrrollic Schiff-base macrocycle (H4L) has been developed to complex a variety of metals such as actinides, rare earth and transition metals that show a wide range of size and diverse oxidation states. Both mono-and bimetallic complexes featured with an intriguing "Pacman-like" structure were obtained. For example, the reaction of H4L with a trivalent uranium precursor [(U)Ⅰ3(THF)4] yielded a neutral [(U)(L)] complex, where the uranium ion was determined by the single crystal X-ray diffraction to be situated inside the ligand mouth and held by eight nitrogen atoms together. The +Ⅳ oxidation state was assigned to the uranium by presuming dihydrogen elimination. Considering the flexibility, tetravalent-anion nature as well as capability of accommodating bimetallic ions and stabilizing various oxidation states of uranium (e.g. Ⅲ~Ⅵ complexes have been found so far) that the polypyrrolic ligand has exhibited in previously synthesized complexes, two divalent uranium ions would be likely complexated by the ligand to generate a complex, [(U)2(L)]. In addition to enriching the coordination chemistry of U(Ⅱ), it is also a good example to explore electronic structures of the low-valent uranium complex and unravel the uranium-uranium multiple bonding nature. Although many theoretical studies have explored uranium complexes, the study focusing on the divalent diuranium complex of a single macrocyclic ligand remains rare. In the work, a relativistic density functional theory has been employed to investigate [(U)2(L)]. The structures in electron spin states (singlet, triplet, quintet, septet and nonet) were optimized. Short distances of U—U (2.32~2.67 Å), large bond order (2.95~3.90) and high stretching vibrational frequencies (180~263 cm-1) were calculated. Energetic calculations find that its triplet state is the ground state. It has the electronic configuration of π4σ2δ2, primarily contributed by U(5f) character. Structural and molecular-orbital analyses suggest a slightly weak uranium-uranium quadruple bond, which is confirmed by the quantum theory of atoms in molecule (QTAIM) calculations. Further comparison with analogues [(U)2(L)]2+ and [(U)2(L)]4+ was also addressed. It is found that the uranium oxidation state is able to tune the energetic matching between the highest-energy occupied orbital of ligand and the adjacent low-energy metal-based orbital, as well as correlates with the electron transfer between metal and ligand and the diuranium multiple bond number.
  • 加载中
    1. [1]

      Hashke, J. M.; Stakebake, J. L. In The Chemistry of the Actinide and Transactinide Elements, Eds.: Morss, L. R.; Edelstein, N. M.; Fuger, J., Springer, Netherlands, 2006, p. 3199.

    2. [2]

      Liddle, S. T. Angew. Chem. Int. Ed. 2015, 54, 8604.  doi: 10.1002/anie.201412168

    3. [3]

      MacDonald, M. R.; Fieser, M. E.; Bates, J. E.; Ziller, J. W.; Furche, F.; Evans, W. J. J. Am. Chem. Soc. 2013, 135, 13310.  doi: 10.1021/ja406791t

    4. [4]

      La Pierre, H. S.; Scheurer, A.; Heinemann, F. W.; Hieringer, W.; Meyer, K. Angew. Chem. Int. Ed. 2014, 53, 7158.  doi: 10.1002/anie.201402050

    5. [5]

      Meyer, G. Angew. Chem. Int. Ed. 2014, 53, 3550.  doi: 10.1002/anie.v53.14

    6. [6]

      Sessler, J. L.; Cho, W. S.; Dudek, S. P.; Hicks, L.; Lynch, V. M.; Huggins, M. T. J. Porphyr. Phthalocyanines 2003, 7, 97.  doi: 10.1142/S1088424603000136

    7. [7]

      Givaja, G.; Blake, A. J.; Wilson, C.; Schroder, M.; Love, J. B. Chem. Commun. 2003, 2508.

    8. [8]

      Arnold, P. L.; Patel, D.; Wilson, C.; Love, J. B. Nature 2008, 451, 315.  doi: 10.1038/nature06467

    9. [9]

      Arnold, P. L.; Potter, N. A.; Magnani, N.; Apostolidis, C.; Griveau, J.-C.; Colineau, E.; Morgenstern, A.; Caciuffo, R.; Love, J. B. Inorg. Chem. 2010, 49, 5341.  doi: 10.1021/ic100374j

    10. [10]

      Arnold, P. L.; Potter, N. A.; Carmichael, C. D.; Slawin, A. M. Z.; Roussel, P.; Love, J. B. Chem. Commun. 2010, 46, 1833.  doi: 10.1039/b921132b

    11. [11]

      Arnold, P. L.; Hollis, E.; White, F. J.; Magnani, N.; Caciuffo, R.; Love, J. B. Angew. Chem. Int. Ed. 2011, 50, 887.  doi: 10.1002/anie.201005511

    12. [12]

      Arnold, P. L.; Jones, G. M.; Odoh, S. O.; Schreckenbach, G.; Magnani, N.; Love, J. B. Nat. Chem. 2012, 4, 221.  doi: 10.1038/nchem.1270

    13. [13]

      Zegke, M.; Nichol, G. S.; Arnold, P. L.; Love, J. B. Chem. Commun. 2015, 51, 5876.  doi: 10.1039/C5CC00867K

    14. [14]

      Su, D.-M.; Zheng, X.-J.; Schreckenbach, G.; Pan, Q.-J. Organometallics 2015, 34, 5225.  doi: 10.1021/acs.organomet.5b00649

    15. [15]

      Laikov, D. N.; Ustynyuk, Y. A. Russ. Chem. Bull. 2005, 54, 820.  doi: 10.1007/s11172-005-0329-x

    16. [16]

      Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865.  doi: 10.1103/PhysRevLett.77.3865

    17. [17]

      Baerends, E. J.; Ziegler, T.; Autschbach, J.; Bashford, D.; Bérces, A.; Bickelhaupt, F. M.; Bo, C.; Boerrigter, P. M.; Cavallo, L.; Chong, D. P.; Deng, L.; Dickson, R. M.; Ellis, D. E.; van Faassen, M.; Fan, L.; Fischer, T. H.; Fonseca Guerra, C.; Franchini, M.; Ghysels, A.; Giammona, A.; van Gisbergen, S. J. A.; Götz, A. W.; Groeneveld, J. A.; Gritsenko, O. V.; Grüning, M.; Gusarov, S.; Harris, F. E.; van den Hoek, P.; Jacob, C. R.; Jacobsen, H.; Jensen, L.; Kaminski, J. W.; van Kesse, G.; Kootstra, F.; Kovalenko, A.; Krykunov, M. V.; van Lenthe, E.; McCormack, D. A.; Michalak, A.; Mitoraj, M.; Morton, S. M.; Neugebauer, J.; Nicu, V. P.; Noodleman, L.; Osinga, V. P.; Patchkovskii, S.; Pavanello, M.; Philipsen, P. H. T.; Post, D.; Pye, C. C.; Ravenek, W.; Rodríguez, J. I.; Ros, P.; Schipper, P. R. T.; van Schoot, H.; Schreckenbach, G.; Seldenthuis, J. S.; Seth, M.; Snijders, J. G.; Solà, M.; Swart, M.; Swerhone, D.; te Velde, G.; Vernooijs, P.; Versluis, L.; Visscher, L.; Visser, O.; Wang, F.; Wesolowski, T. A.; van Wezenbeek, E. M.; Wiesenekker, G.; Wolff, S. K.; Woo, T. K.; Yakovlev, A. L.; ADF2014.06 ed.; SCM, Theoretical Chemistry, Vrije Universiteit: Amsterdam, The Netherlands, 2014.

    18. [18]

      Klamt, A.; Jonas, V.; Burger, T.; Lohrenz, J. C. W. J. Phys. Chem. A 1998, 102, 5074.  doi: 10.1021/jp980017s

    19. [19]

      Bao, Z.; Zhao, H.-B.; Qu, N.; Schreckenbach, G.; Pan, Q.-J. Dalton Trans. 2016, 45, 15970.  doi: 10.1039/C6DT01930G

    20. [20]

      Zhao, S.; Zhong, Y.; Guo, Y.; Zhang, H.; Pan, Q. Acta Chim. Sinica 2016, 74, 683.  doi: 10.3866/PKU.WHXB201512302
       

    21. [21]

      van Lenthe, E.; Baerends, E. J.; Snijders, J. G. J. Chem. Phys. 1993, 99, 4597.  doi: 10.1063/1.466059

    22. [22]

      Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R. P., C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J.; Gaussian 09, Revision D.01 ed. Gaussian, Inc., Wallingford CT, 2009.

    23. [23]

      Cao, X.; Dolg, M.; Stoll, H. J. Chem. Phys. 2003, 118, 487.  doi: 10.1063/1.1521431

    24. [24]

      Lu, T.; Chen, F. J. Comput. Chem. 2012, 33, 580.  doi: 10.1002/jcc.v33.5

    25. [25]

      Patel, D.; Liddle, S. T. Rev. Inorg. Chem. 2012, 32, 1.  doi: 10.1515/revic.2012.0001

    26. [26]

      Patel, D.; King, D. M.; Gardner, B. M.; McMaster, J.; Lewis, W.; Blake, A. J.; Liddle, S. T. Chem. Commun. 2011, 47, 295.  doi: 10.1039/C0CC01387K

    27. [27]

      Gardner, B. M.; Patel, D.; Cornish, A. D.; McMaster, J.; Lewis, W.; Blake, A. J.; Liddle, S. T. Chem. Eur. J. 2011, 17, 11266.  doi: 10.1002/chem.201101394

    28. [28]

      Liddle, S. T.; McMaster, J.; Mills, D. P.; Blake, A. J.; Jones, C.; Woodul, W. D. Angew. Chem. Int. Ed. 2009, 48, 1077.  doi: 10.1002/anie.v48:6

    29. [29]

      Hlina, J. A.; Pankhurst, J. R.; Kaltsoyannis, N.; Arnold, P. L. J. Am. Chem. Soc. 2016, 138, 3333.  doi: 10.1021/jacs.5b10698

    30. [30]

      Cavigliasso, G.; Kaltsoyannis, N. Inorg. Chem. 2006, 45, 6828.  doi: 10.1021/ic060777e

    31. [31]

      Cavigliasso, G.; Kaltsoyannis, N. Dalton Trans. 2006, 5476.

    32. [32]

      Roos, B. O.; Gagliardi, L. Inorg. Chem. 2006, 45, 803.  doi: 10.1021/ic051665a

    33. [33]

      Zhou, J.; Sonnenberg, J. L.; Schlegel, H. B. Inorg. Chem. 2010, 49, 6545.  doi: 10.1021/ic100427t

    34. [34]

      Long, B.; Bao, J. L.; Truhlar, D. G. J. Am. Chem. Soc. 2016, 138, 14409.  doi: 10.1021/jacs.6b08655

    35. [35]

      Xiong, Z.; Chen, Q.; Zheng, X.; Wei, X. Acta Chim. Sinica 2005, 63, 572.  doi: 10.3321/j.issn:0567-7351.2005.07.004
       

    36. [36]

      Zhang, Y.; Ma, X.; Zhang, X.; Lei, M. Acta Chim. Sinica 2016, 74, 340.  doi: 10.11862/CJIC.2017.034
       

    37. [37]

      Yang, Y.; Zhang, Q.; Shi, J.; Fu, Y. Acta Chim. Sinica 2016, 74, 422.  doi: 10.3866/PKU.WHXB201512082
       

    38. [38]

      Kirker, I.; Kaltsoyannis, N. Dalton Trans. 2011, 40, 124.  doi: 10.1039/C0DT01018A

    39. [39]

      Tassell, M. J.; Kaltsoyannis, N. Dalton Trans. 2010, 39, 6719.  doi: 10.1039/c000704h

    40. [40]

      Liu, J.-B.; Chen, G. P.; Huang, W.; Clark, D. L.; Schwarz, W. H. E.; Li, J. Dalton Trans. 2017, 46, 2542.  doi: 10.1039/C6DT03953G

  • 加载中
    1. [1]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    2. [2]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    3. [3]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    4. [4]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    5. [5]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    6. [6]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    7. [7]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    8. [8]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    9. [9]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    10. [10]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    11. [11]

      Donghui PANYuping XUXinyu WANGLizhen WANGJunjie YANDongjian SHIMin YANGMingqing CHEN . Preparation and in vivo tracing of 68Ga-labeled PM2.5 mimetic particles for positron emission tomography imaging. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 669-676. doi: 10.11862/CJIC.20230468

    12. [12]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    13. [13]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    14. [14]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    15. [15]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    16. [16]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    17. [17]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    18. [18]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

    19. [19]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    20. [20]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

Metrics
  • PDF Downloads(3)
  • Abstract views(681)
  • HTML views(66)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return