Citation: Li Jinxiang, Qin Hejie, Zhang Xueying, Guan Xiaohong. Improving the Reactivity of Zerovalent Iron toward Various Contaminants by Weak Magnetic Field: Performances and Mechanisms[J]. Acta Chimica Sinica, ;2017, 75(6): 544-551. doi: 10.6023/A17010007 shu

Improving the Reactivity of Zerovalent Iron toward Various Contaminants by Weak Magnetic Field: Performances and Mechanisms

  • Corresponding author: Guan Xiaohong, guanxh@tongji.edu.cn
  • Received Date: 7 January 2017

    Fund Project: the National Natural Science Foundation of China U1532120the National Natural Science Foundation of China 21522704the National Natural Science Foundation of China 51478329

Figures(9)

  • Zero-valent iron (ZVI), a simple but amazingly versatile material, has low intrinsic reactivity toward various contaminants as documented from laboratory studies as well as field demonstrations, which poses potential limitations to its practical application in environmental remediation. Although many methods have been developed to improve the reactivity of ZVI in the literature, high costs, significant work-load, and complex operations may inhibit the application of these methods. We pioneered the research in employing weak magnetic field (WMF) to accelerate the removal of various metal(loid)s, including Se(Ⅳ)/Se(Ⅵ), As(V)/As(Ⅲ), Sb(V), Cu(Ⅱ)/EDTA-Cu(Ⅱ), and Cr(Ⅵ) by pristine ZVI (Pri-ZVI) and/or aged ZVI. The rate constants of metal(loid)s sequestration by Pri-ZVI or aged ZVI were increased by 1.1~383.7 folds due to the application of WMF. Furthermore, WMF could be employed to improve the removal of organic contaminants by ZVI activated H2O2 or persulfate because of the accelerated ZVI corrosion in the presence of WMF. The superimposed WMF had negligible influence on the apparent activation energy of metal(loid)s removal by ZVI, indicating that WMF accelerated metal(loid)s removal by ZVI but did not change the mechanisms. The XAFS, XRD, and XPS analysis confirmed that the application of WMF did not change the mechanisms of metal(loid)s removal but accelerated the transformation (reduction or oxidation) of contaminants. Electrochemical analysis showed that the accelerated ZVI corrosion in the presence of WMF was ascribed to the enhanced mass transfer. We further identified the relative contribution of Lorentz force (FL) and magnetic gradient force (FΔB) in the enhancing effect of WMF. It suggested that FΔB rather than FL was the major driving force for the observed WMF effect on the enhanced reactivity of ZVI. Moreover, we proposed to apply premagnetization to increase the reactivity of ZVI toward As(Ⅲ) sequestration taking advantage of the magnetic memory of ZVI, i.e., the remanence of ZVI. In addition, the premagnetized ZVI (Mag-ZVI) samples from different origins were applied to enhance the removal of various oxidative contaminants[such as azo dyes, As(Ⅲ), Pb(Ⅱ), Cu(Ⅱ), Se(Ⅳ), Ag(Ⅰ) and Cr(Ⅵ)] under well-controlled experimental conditions. The rate constants of contaminants removal by premagnetized ZVI samples were 1.2~12.2 folds greater than those by Pri-ZVI samples. As a chemical-and energy-free method, improving the reactivity of ZVI by either WMF superimposition or premagnetization treatment is novel and promising.
  • 加载中
    1. [1]

      Gould, J. P. Water Res. 1982, 16, 871.  doi: 10.1016/0043-1354(82)90016-1

    2. [2]

      Khudenko, B. M. Water Sci. Technol. 1985, 15, 204.
       

    3. [3]

      Gillham, R. W.; O'Hannesin, S. F. Ground Water 1994, 32, 958.  doi: 10.1111/gwat.1994.32.issue-6

    4. [4]

      Matheson, L. J.; Tratnyek, P. G. Environ. Sci. Technol. 1994, 28, 2045.  doi: 10.1021/es00061a012

    5. [5]

      EPA, USA, Ground Water Remedies Selected at Superfund Sites, 2002.

    6. [6]

      Guan, X. H.; Sun, Y. K.; Qin, H. J.; Li, J. X.; Lo, I. M.; He, D.; Dong, H. R. Water Res. 2015, 75, 224.  doi: 10.1016/j.watres.2015.02.034

    7. [7]

      Wang, C.; Zhang, W. Environ. Sci. Technol. 1997, 94, 9602.

    8. [8]

      Hung, H. M.; Hoffmann, M. R. Environ. Sci. Technol. 1998, 32, 3011.  doi: 10.1021/es980273i

    9. [9]

      Lien, H. L.; Zhang, W. X. J. Environ. Eng. 1999, 125, 1042.  doi: 10.1061/(ASCE)0733-9372(1999)125:11(1042)

    10. [10]

      Harendra, S.; Vipulanandan, C. Colloid Surface A 2008, 322, 6.

    11. [11]

      Liou, Y. H.; Lo, S. L.; Lin, C. J.; Wen, H. K.; Weng, S. C. J. Hazard. Mater. 2005, 126, 189.  doi: 10.1016/j.jhazmat.2005.06.038

    12. [12]

      Son, H. S.; Im, J. K.; Zoh, K. D. Water Res. 2009, 43, 1457.  doi: 10.1016/j.watres.2008.12.029

    13. [13]

      Jou, C. J. G.; Hsieh, S. C.; Lee, C. L.; Lin, C.; Huang, H. W. J. Taiwan Inst. Chem. E 2010, 41, 216.  doi: 10.1016/j.jtice.2009.08.012

    14. [14]

      Xu, J.; Hao, Z.; Xie, C.; Lv, X.; Yang, Y.; Xu, X. Desalination 2012, 284, 9.  doi: 10.1016/j.desal.2011.08.029

    15. [15]

      Huang, Y. H.; Tang, C.; Zeng, H. Chem. Eng. J. 2012, 200, 257.

    16. [16]

      Scherer, M. M.; Johnson, K. M.; Westall, J. C.; Tratnyek, P. G. Environ. Sci. Technol. 2001, 35, 2804.  doi: 10.1021/es0016856

    17. [17]

      Noubactep, C. Environ. Technol. 2008, 29, 909.  doi: 10.1080/09593330802131602

    18. [18]

      Kim, D. H. J. Hazard. Mater. 2011, 192, 928.  doi: 10.1016/j.jhazmat.2011.05.075

    19. [19]

      Jiang, J. H.; Li, Y. H.; Cai, W. M. J. Hazard. Mater. 2008, 153, 508.  doi: 10.1016/j.jhazmat.2007.08.083

    20. [20]

      Ambashta, R. D.; Repo, E.; Sillanpää, M. Ind. Eng. Chem. Res. 2011, 50, 11771.  doi: 10.1021/ie102121e

    21. [21]

      Liang, L.; Sun, W.; Guan, X.; Huang, Y.; Choi, W.; Bao, H.; Li, L.; Jiang, Z. Water Res. 2014, 49, 371.  doi: 10.1016/j.watres.2013.10.026

    22. [22]

      Liang, L.; Guan, X.; Huang, Y.; Ma, J.; Sun, X.; Qiao, J.; Zhou, G. Sep. Purif. Technol. 2015, 156, Part 3, 1064.
       

    23. [23]

      Sun, Y. K.; Guan, X. H.; Wang, J. M.; Meng, X. G.; Xu, C. H.; Zhou, G. M. Environ. Sci. Technol. 2014, 48, 6850.  doi: 10.1021/es5003956

    24. [24]

      Guan, X.; Jiang, X.; Qiao, J.; Zhou, G. J. Hazard. Mater. 2015, 300, 688.  doi: 10.1016/j.jhazmat.2015.07.070

    25. [25]

      Jiang, X.; Qiao, J.; Lo, I. M. C.; Wang, L.; Guan, X.; Lu, Z.; Zhou, G.; Xu, C. J. Hazard. Mater. 2015, 283, 880.  doi: 10.1016/j.jhazmat.2014.10.044

    26. [26]

      Feng, P.; Guan, X. H.; Sun, Y. K.; Choi, W. Y.; Qin, H. J.; Wang, J. M.; Qiao, J. L.; Li, L. N. J. Environ. Sci.-China 2015, 31, 175.  doi: 10.1016/j.jes.2014.10.017

    27. [27]

      Li, J.; Bao, H.; Xiong, X.; Sun, Y.; Guan, X. Sep. Purif. Technol. 2015, 151, 276.  doi: 10.1016/j.seppur.2015.07.056

    28. [28]

      Xu, C.; Zhang, B.; Zhu, L.; Lin, S.; Sun, X.; Jiang, Z.; Tratnyek, P. G. Environ. Sci. Technol. 2016, 50, 1483.  doi: 10.1021/acs.est.5b05360

    29. [29]

      Liang, L. P.; Guan, X. H.; Shi, Z.; Li, J. L.; Wu, Y. N.; Tratnyek, P. G. Environ. Sci. Technol. 2014, 48, 6326.  doi: 10.1021/es500958b

    30. [30]

      Xu, H.; Sun, Y.; Li, J.; Li, F.; Guan, X. Environ. Sci. Technol. 2016, 50, 8214.  doi: 10.1021/acs.est.6b01763

    31. [31]

      Xiong, X.; Sun, Y.; Sun, B.; Song, W.; Sun, J.; Gao, N.; Qiao, J.; Guan, X. RSC Adv. 2015, 5, 13357.  doi: 10.1039/C4RA16318D

    32. [32]

      Xiang, W.; Zhang, B.; Zhou, T.; Wu, X.; Mao, J. Sci. Rep.-UK 2016, 6.
       

    33. [33]

      Xiong, X.; Bo, S.; Jing, Z.; Gao, N.; Shen, J.; Li, J.; Guan, X. Water Res. 2014, 62, 53.  doi: 10.1016/j.watres.2014.05.042

    34. [34]

      Ragsdale, S. R.; Grant, K. M.; White, H. S. J. Am. Chem. Soc. 1998, 120, 13461.  doi: 10.1021/ja982540q

    35. [35]

      Hinds, G.; Coey, J.; Lyons, M. E. G. Electrochem. Commun. 2001, 3, 215.  doi: 10.1016/S1388-2481(01)00136-9

    36. [36]

      Lioubashevski, O.; Katz, E.; Willner, I. J. Phy. Chem. B 2004, 108, 5778.  doi: 10.1021/jp037785q

    37. [37]

      Waskaas, M.; Kharkats, Y. I. J. Electroanal. Chem. 2001, 502, 51.  doi: 10.1016/S0022-0728(00)00528-3

    38. [38]

      Li, J.; Qin, H.; Zhang, W.-X.; Shi, Z.; Zhao, D.; Guan, X. Sep. Purif. Technol. 2016, 176, 40.
       

    39. [39]

      Aziz, F.; Pandey, P.; Chandra, M.; Khare, A.; Rana, D. S.; Mavani, K. R. J. Magn. Magn. Mater. 2014, 356, 98.  doi: 10.1016/j.jmmm.2013.12.037

    40. [40]

      Ghosh, N.; Mandal, B. K.; Kumar, K. M. J. Magn. Magn. Mater. 2012, 324, 3839.  doi: 10.1016/j.jmmm.2012.06.026

    41. [41]

      Li, J. X.; Shi, Z.; Ma, B.; Zhang, P. P.; Jiang, X.; Xiao, Z. J.; Guan, X. H. Environ. Sci. Technol. 2015, 49, 10581.  doi: 10.1021/acs.est.5b02699

    42. [42]

      Li, J.; Qin, H.; Guan, X. Environ. Sci. Technol. 2015, 49, 1440.

    43. [43]

      Li, X.; Zhou, M.; Pan, Y.; Xu, L. Chem. Eng. J. 2016, 307, 1092.
       

  • 加载中
    1. [1]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    2. [2]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    3. [3]

      Hong Wu Yuxi Wang Hongyan Feng Xiaokui Wang Bangkun Jin Xuan Lei Qianghua Wu Hongchun Li . Application of Computational Chemistry in the Determination of Magnetic Susceptibility of Metal Complexes. University Chemistry, 2025, 40(3): 116-123. doi: 10.12461/PKU.DXHX202405141

    4. [4]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    5. [5]

      Yuyao Wang Zhitao Cao Zeyu Du Xinxin Cao Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-. doi: 10.3866/PKU.WHXB202406014

    6. [6]

      Ping Ye Lingshuang Qin Mengyao He Fangfang Wu Zengye Chen Mingxing Liang Libo Deng . 荷叶衍生多孔碳的零电荷电位调节实现废水中电化学捕集镉离子. Acta Physico-Chimica Sinica, 2025, 41(3): 2311032-. doi: 10.3866/PKU.WHXB202311032

    7. [7]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    8. [8]

      Li'na ZHONGJingling CHENQinghua ZHAO . Synthesis of multi-responsive carbon quantum dots from green carbon sources for detection of iron ions and L-ascorbic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 709-718. doi: 10.11862/CJIC.20240280

    9. [9]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003

    10. [10]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    11. [11]

      Huiying Xu Minghui Liang Zhi Zhou Hui Gao Wei Yi . Application of Quantum Chemistry Computation and Visual Analysis in Teaching of Weak Interactions. University Chemistry, 2025, 40(3): 199-205. doi: 10.12461/PKU.DXHX202407011

    12. [12]

      Yingran Liang Fei WangJiabao Sun Hongtao Zheng Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024

    13. [13]

      Xinlong WANGZhenguo CHENGGuo WANGXiaokuen ZHANGYong XIANGXinquan WANG . Enhancement of the fragile interface of high voltage LiCoO2 by surface gradient permeation of trace amounts of Mg/F. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 571-580. doi: 10.11862/CJIC.20230259

    14. [14]

      Zhiliang Li . An Overview of Research on the History of Catalysis Science in China. University Chemistry, 2024, 39(7): 398-404. doi: 10.3866/PKU.DXHX202310101

    15. [15]

      Borong Yu Huijiao Zhang Xinyu Zhang Xiaoying Li Shuming Chen Zhangang Han . The Blue Elf in the Dark: Gradient Science Popularization Experiments on Chemiluminescence. University Chemistry, 2024, 39(9): 295-303. doi: 10.12461/PKU.DXHX202403107

    16. [16]

      Yufan Pan Xue Ding Jiayu Lin Haiting Wu Hairong Huang Cuixue Chen Meiling Ye . Oil Cosmetics, Charming Chemistry: A Gradient Science Popularization Scheme for Cream Cosmetic Preparation. University Chemistry, 2025, 40(4): 382-389. doi: 10.12461/PKU.DXHX202406078

    17. [17]

      Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020

    18. [18]

      Guoze Yan Bin Zuo Shaoqing Liu Tao Wang Ruoyu Wang Jinyang Bao Zhongzhou Zhao Feifei Chu Zhengtong Li Yusuke Yamauchi Saad Melhi Xingtao Xu . Opportunities and Challenges of Capacitive Deionization for Uranium Extraction from Seawater. Acta Physico-Chimica Sinica, 2025, 41(4): 100032-. doi: 10.3866/PKU.WHXB202404006

    19. [19]

      Haiping Wang . A Streamlined Method for Drawing Lewis Structures Using the Valence State of Outer Atoms. University Chemistry, 2024, 39(8): 383-388. doi: 10.12461/PKU.DXHX202401073

    20. [20]

      Zitong Chen Zipei Su Jiangfeng Qian . Aromatic Alkali Metal Reagents: Structures, Properties and Applications. University Chemistry, 2024, 39(8): 149-162. doi: 10.3866/PKU.DXHX202311054

Metrics
  • PDF Downloads(41)
  • Abstract views(2925)
  • HTML views(637)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return