Citation: Wang Yifan, Fan Yimei, Jian Jun, Pan Yumin, Zhao Liang, Jing Xueping, Zhou Shengjia, Chen Xiaohong, Du Quan, Wang Ling, Wu Xiaoju, Fu Xiangkai. Synthesis of Chiral Salen Mn (Ⅲ) Complex Immobilized on Phenoxy-modified AlPS-PVPA as Catalysts for Epoxidation of Olefins[J]. Acta Chimica Sinica, ;2017, 75(7): 715-722. doi: 10.6023/A17010002 shu

Synthesis of Chiral Salen Mn (Ⅲ) Complex Immobilized on Phenoxy-modified AlPS-PVPA as Catalysts for Epoxidation of Olefins

  • Corresponding author: Chen Xiaohong, shengxiaohongb@163.com
  • Received Date: 2 January 2017

    Fund Project: the Innovation Fund of Postgraduate, Xihua University ycjj2017101the key research fund of Sichuan Provincial Department of Education 14ZA0113

Figures(14)

  • Chiral epoxides are versatile intermediates that can be readily converted into a wide variety of enantiomerically pure compounds by means of region-and stereo-selective ring opening reactions.The asymmetric epoxidation of unfunctionalized olefins is an important approach for synthesizing optically active epoxides, and thus is widely used in the synthesis of fine chemicals, such as pharmaceuticals, agrochemicals and perfumes.Chiral salen Mn (Ⅲ) complexes have demonstrated activities and selectivities for the enantioselective epoxidation of unfunctionalized olefins under homogeneous conditions.Compared with the homogeneous asymmetric catalysts, the heterogeneous ones have the advantages of easy catalyst/product separation and simple catalyst recycling.And more and more interests have been focused on the studies of heterogenization of chiral complexes.New types of supported catalysts are obtained by anchoring chiral salen Mn (Ⅲ) complex on a series of phenoxy-modified aluminium poly (styrene-phenylvinylphosphonate)-phosphate (AlPS-PVPA) in the text.All the prepared catalysts are characterized by FT-IR, UV-vis, XPS, SEM, TG and elemental analysis.The catalytic capabilities are investigated with m-CPBA as an oxidant and with indene and α-methylstyrene as substrates for asymmetric epoxidation of unfunctionalized olefins.The supported catalysts indicate superior catalytic activities in the asymmetric epoxidation of α-methylstyrene and indene with m-CPBA as oxidative system, compared with the corresponding homogeneous catalyst (ee, > 97% vs.54% and > 99% vs.65%).The steric properties of the linkages really play vital impacts on the configuration of the transition state for the asymmetric reactions.Contrary to most of the literatures reported, the results show that the heterogeneous catalysts 3a~3d exhibit excellent catalytic activities, and their conversions and ee values increase remarkably in the absence of N-methylmorpholine N-oxide (NMO) under the same catalytic conditions.The structures of the immobilized cat-alysts similar to the N-oxide ligand act as axial ligands leading to the unusual phenomenon.Simultaneously, additives are generally regarded as axial ligands on the transition metal catalyst, which make for activating the catalyst either toward oxidation or toward reactivity with the olefin.Thus, there is a steric hindrance when the N-oxide ligand is added and the optimal geometric configuration of the reactive intermediate salen Mn (V)=O was altered.It is steric hindrance that makes olefins approaching salen Mn (V)=O difficult and lower ee values are obtained.Furthermore, these catalysts are easily separated and are relatively stable and reused nine times without significant loss of activities.
  • 加载中
    1. [1]

      McGarrigle, E. M.; Gilheany, D. G. Chem. Rev. 2005, 105(5), 1563.  doi: 10.1021/cr0306945

    2. [2]

      Zhang, W.; Loebach, J. L.; Wilson, S. R.; Jacobsen, E. N. J. Am. Chem. Soc. 1990, 112(7), 2801.  doi: 10.1021/ja00163a052

    3. [3]

      Zhang, W.; Lee, N. H.; Jacobsen, E. N. J. Am. Chem. Soc. 1994, 116, 425.  doi: 10.1021/ja00080a070

    4. [4]

      Xia, Q. H.; Ge, H. Q.; Ye, C. P.; Liu, Z. M.; Su, K. X. Chem. Rev. 2005, 105, 1603.  doi: 10.1021/cr0406458

    5. [5]

      Li, C.; Zhang, H. D.; Jiang, D. M.; Yang, Q. H. Chem. Commun. 2007, 547.
       

    6. [6]

      Zou, X. C.; Shi, K. Y.; Li, J.; Wang, Y.; Deng, C. F.; Ren, Y. R.; Tan, J.; Fu, X. K. Chin. J. Org. Chem. 2016, 36, 1765.

    7. [7]

      Zou, X. C.; Fu, X. K.; Luo, Y. F. Acta Chim. Sinica 2011, 69, 431.
       

    8. [8]

      Bai, R. F.; Fu, X. K.; Bao, H. B.; Ren, W. S. Catal. Commun. 2008, 9, 1588.  doi: 10.1016/j.catcom.2008.01.014

    9. [9]

      Ren, W. S.; Fu, X. K. J. Mol. Catal. A:Chem. 2009, 312, 40.  doi: 10.1016/j.molcata.2009.07.002

    10. [10]

      Luo, Y. F.; Fu, X. K.; Zou, X. C.; Wang, C. Y.; Hu, X. Y.; Jia, Z. Y.; Zhang, H. Z. J. Inorg. Organomet. Polym. 2011, 21(2), 276.  doi: 10.1007/s10904-010-9447-5

    11. [11]

      Tu, X. B.; Fu, X. K.; Hu, X. Y.; Li, Y. D. Inorg. Chem. Commun. 2010, 13, 404.  doi: 10.1016/j.inoche.2009.12.034

    12. [12]

      Gong, B. W.; Fu, X. K.; Chen, J. X.; Li, Y. D.; Zou, X. C.; Tu, X. B.; Ding, P. P.; Ma, L. P. J. Catal. 2009, 262, 9.  doi: 10.1016/j.jcat.2008.11.027

    13. [13]

      Wang, C. W.; Fu, X. K.; Huang, J. Acta Chim. Sinica 2011, 69, 1681.
       

    14. [14]

      Huang, J.; Fu, X. K.; Wang, G.; Li, C.; Hu, X. Y. Dalton Trans. 2011, 40, 3631.  doi: 10.1039/c0dt01553a

    15. [15]

      Hu, X. Y.; Fu, X. K.; Xu, J. W.; Wang, C. W. J. Organomet. Chem. 2011, 696, 2797.  doi: 10.1016/j.jorganchem.2011.04.027

    16. [16]

      Thomas, J.; Raja, M. R.; Sankar, G.; Bell, R. G. Nature 1999, 398(6724), 227.  doi: 10.1038/18417

    17. [17]

      Thomas, J. M.; Raja, R.; Sankar, G.; Bell, R. G. Acc. Chem. Res. 2001, 34(3), 191.  doi: 10.1021/ar970020e

    18. [18]

      Rao, C. N. R.; Natarajan, S. A.; Choudhury, S.; Neeraj, A. A. Acc. Chem. Res. 2001, 34(1), 80.  doi: 10.1021/ar000135+

    19. [19]

      Chong, K. C. W.; Sivaguru, J.; Shichi, T.; Yoshimi, Y.; Ramamurthy, V.; Scheffer, J. R. J. Am. Chem. Soc. 2002, 124(12), 2858.  doi: 10.1021/ja016989m

    20. [20]

      Joy, A.; Uppili, S.; Netherton, M. R.; Scheffer, J.; Ramamurthy, R. V. J. Am. Chem. Soc. 2000, 122(4), 728.  doi: 10.1021/ja993746+

    21. [21]

      Cowley, A. R.; Jones, R. H.; Teat, S. J.; Chippindale, A. M. Mi-croporous Mesoporous Mater. 2002, 51(1), 51.  doi: 10.1016/S1387-1811(01)00474-7

    22. [22]

      Zhao, Z. H. Chin. J. Syn. Chem. 2006, 14(1), 103.
       

    23. [23]

      Huang, Q. W.; Zhang, S. Y. J. Mol. Catal. 2003, 17(6), 417.
       

    24. [24]

      Zou, X. C.; Fu, X. K.; Li, Y. D.; Tu, X. B.; Fu, S. D.; Luo, Y. F.; Wu, X. J. Adv. Synth. Catal. 2010, 352, 163.  doi: 10.1002/adsc.v352:1

    25. [25]

      Silva, A. R.; Figueiredo, J. L.; Freire, C.; Castro, B. D. Microporous Mesoporous Mater. 2004, 68, 83.  doi: 10.1016/j.micromeso.2003.12.002

    26. [26]

      Duan, F. Z.; Li, J. Y.; Sun, W.; Chen, P.; Yu, J. H.; Xu, R. R. Sci. Chin. Chem. 2011, 41(1), 24.
       

    27. [27]

      Wu, X. J.; Fu, X. K.; Huang, J.; Jia, Z. Y. Chin. J. Inorg. Chem. 2012, 28(11), 2341.
       

    28. [28]

      Zhang, H. D.; Zhang, Y. M.; Li, C. Tetrahedron 2006, 62, 6640.  doi: 10.1016/j.tet.2006.01.117

    29. [29]

      Zhang, H. D.; Xiang, S.; Xiao, J. L.; Li, C. J. Mol. Catal. A:Chem. 2005, 238, 175.  doi: 10.1016/j.molcata.2005.05.024

  • 加载中
    1. [1]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    2. [2]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    3. [3]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    4. [4]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    5. [5]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    6. [6]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    7. [7]

      Lu Qi Zhaoyang Chen Xiaoyu Luan Zhiqiang Zheng Yurui Xue Yuliang Li . Atomically dispersed Mn enhanced catalytic performance for overall water splitting on graphdiyne-coated copper hydroxide nanowire. Chinese Journal of Structural Chemistry, 2024, 43(1): 100197-100197. doi: 10.1016/j.cjsc.2023.100197

    8. [8]

      Shaojie Ding Henan Wang Xiaojing Dai Yuru Lv Xinxin Niu Ruilian Yin Fangfang Wu Wenhui Shi Wenxian Liu Xiehong Cao . Mn-modulated Co–N–C oxygen electrocatalysts for robust and temperature-adaptative zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100302-100302. doi: 10.1016/j.cjsc.2024.100302

    9. [9]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    10. [10]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    11. [11]

      Renshu Huang Jinli Chen Xingfa Chen Tianqi Yu Huyi Yu Kaien Li Bin Li Shibin Yin . Synergized oxygen vacancies with Mn2O3@CeO2 heterojunction as high current density catalysts for Li–O2 batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100171-100171. doi: 10.1016/j.cjsc.2023.100171

    12. [12]

      Simin WeiYaqing YangJunjie LiJialin WangJinlu TangNingning WangZhaohui Li . The Mn/Yb/Er triple-doped CeO2 nanozyme with enhanced oxidase-like activity for highly sensitive ratiometric detection of nitrite. Chinese Chemical Letters, 2024, 35(6): 109114-. doi: 10.1016/j.cclet.2023.109114

    13. [13]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    14. [14]

      Le Ye Wei-Xiong Zhang . Structural phase transition in a new organic-inorganic hybrid post-perovskite: (N,N-dimethylpyrrolidinium)[Mn(N(CN)2)3]. Chinese Journal of Structural Chemistry, 2024, 43(6): 100257-100257. doi: 10.1016/j.cjsc.2024.100257

    15. [15]

      Jing CaoDezheng ZhangBianqing RenPing SongWeilin Xu . Mn incorporated RuO2 nanocrystals as an efficient and stable bifunctional electrocatalyst for oxygen evolution reaction and hydrogen evolution reaction in acid and alkaline. Chinese Chemical Letters, 2024, 35(10): 109863-. doi: 10.1016/j.cclet.2024.109863

    16. [16]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    17. [17]

      Mingjiao LuZhixing WangGui LuoHuajun GuoXinhai LiGuochun YanQihou LiXianglin LiDing WangJiexi Wang . Boosting the performance of LiNi0.90Co0.06Mn0.04O2 electrode by uniform Li3PO4 coating via atomic layer deposition. Chinese Chemical Letters, 2024, 35(5): 108638-. doi: 10.1016/j.cclet.2023.108638

    18. [18]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    19. [19]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    20. [20]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

Metrics
  • PDF Downloads(2)
  • Abstract views(1345)
  • HTML views(193)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return