Citation: Li Lei, Jia Guixiao, Wang Xiaoxia, Wu Tongwei, Song Xiwen, An Shengli. [1+1] and [2+1] Additions on a (5, 5) Single-Walled Carbon Nanotube with V1~V4 Vacancies Based on Defect Curvature: A First Principles Study[J]. Acta Chimica Sinica, ;2017, 75(3): 284-292. doi: 10.6023/A16110645 shu

[1+1] and [2+1] Additions on a (5, 5) Single-Walled Carbon Nanotube with V1~V4 Vacancies Based on Defect Curvature: A First Principles Study

  • Corresponding author: Jia Guixiao, guixiao.jia@163.com
  • Received Date: 29 November 2016

    Fund Project: Youth Talent Incubator of Inner Mongolia University of Science and Technology 2014CY012the Natural Science Foundation of Inner Mongolia 2016MS0513

Figures(7)

  • Binding energies, geometric and electronic structures for[1+1] (H/[1+1]) and[2+1] (O/[2+1]) additions of H and O atoms on a (5, 5) single-walled carbon nanotube with V1~V4 vacancies are studied using a GGA-PBE method in this work. Defect curvature proposed on the basis of directional curvature theory, including atomic curvature (KM-def) and bond curvature (KD-def), is used to predict the reactivities of different atoms and bonds at the defect structural area. We find that the existence of vacancy defects enhances the H and O adsorption ability on the (5, 5) tube. The calculated results show that in the V1 and V3 defects the C atoms with two-coordination have the strongest chemical activity for[1+1] and[2+1] additions, and among which the C atoms participated into[2+1] additions form carbonyl groups with O. For other atoms and bonds at the defect structural area, the binding energies of one H atom on the (5, 5) tube monotonously increases with the increase of KM-def. When the KD-def of C-C bonds for the O/[2+1] additions are large, the C-C bonds are easily broken, and they are corresponding to adducts with the C-O-C configuration structures and large binding energies. When the KD-def of C-C bonds are small, the C-C bonds are not broken, and they are corresponding to adducts with the closed-3MR (three-member ring) structures. The binding energies for the H/[1+1] and O/[2+1] additions on the (5, 5) tube mainly are determined by the curvature and affected by the electronic density in frontier orbital and partial density of state (PDOS) of C atoms participated in the reactions. The large electronic density in the highest occupied molecular orbital (HOMO) and large PDOS of C atoms near the Fermi level strengthen the adsorption of H and O atoms on the (5, 5) tube. This study will provide a theoretical basis for surface modifications of carbon nanotubes with vacancy defects.
  • 加载中
    1. [1]

      Dresselhaus, M. S.; Dresselhaus, G.; Avouris, P. Carbon Nano-tubes:Synthesis, Structure, Properties and Applications, Springer, Germany, 2001, pp. 11~28.

    2. [2]

      Zhou, Z. W.; Li, Q. W.; Chen, L. Z.; Liu, C. H.; Fan, S. S. Acta Chim. Sinica 2016, 74, 738(in Chinese).  doi: 10.6023/A16070343
       

    3. [3]

      Li, L. C.; Zhang, M.; Mao, S.; Yang, C.; Tian, A. M. Acta Chim. Sinica 2015, 73, 143(in Chinese).  doi: 10.6023/A14100729
       

    4. [4]

      Zhu, H.; Suenaga, K.; Hashimoto, A.; Urita, K.; Iijima, S. Chem. Phys. Lett. 2005, 412, 116.  doi: 10.1016/j.cplett.2005.06.119

    5. [5]

      Ouyang, M. Science 2001, 292, 702.  doi: 10.1126/science.1058853

    6. [6]

      Huang, J.; Chen, S.; Ren, Z.; Wang, Z.; Kempa, K.; Naughton, M.; Chen, G.; Dresselhaus, M. Phys. Rev. Lett. 2007, 98, 185501.  doi: 10.1103/PhysRevLett.98.185501

    7. [7]

      Stone, A. J.; Wales, D. J. Chem. Phys. Lett. 1986, 128, 501.  doi: 10.1016/0009-2614(86)80661-3

    8. [8]

      Lusk, M. T.; Wu, D. T.; Carr, L. D. Phys. Rev. B 2010, 81, 155444.  doi: 10.1103/PhysRevB.81.155444

    9. [9]

      Lahiri, J.; Lin, Y.; Bozkurt, P.; Oleynik, I. I.; Batzill, M. Nat. Nanotechnol. 2010, 53, 1.

    10. [10]

      Lee, G. D.; Wang, C. Z.; Yoon, E.; Hwang, N. M.; Ho, K. M. Appl. Phys. Lett. 2010, 97, 093106.  doi: 10.1063/1.3481799

    11. [11]

      Sharma, S.; Chandra, R.; Kumar, P.; Kumar, N. Comput. Mater. Sci. 2014, 86, 1.  doi: 10.1016/j.commatsci.2014.01.035

    12. [12]

      Rafiee, R.; Pourazizi, R. Mater. Res. 2014, 17, 758.  doi: 10.1590/S1516-14392014005000071

    13. [13]

      Zhou, Q. X.; Wang, C. Y.; Fu, Z. B.; Tang, Y. J.; Zhang, H. Front. Phys. 2014, 9, 200.  doi: 10.1007/s11467-013-0409-6

    14. [14]

      Mashapa, M. G.; Chetty, N.; Ray, S. S. J. Nanosci. Nanotechnol. 2012, 12, 7030.  doi: 10.1166/jnn.2012.6487

    15. [15]

      Kotakoski, J.; Krasheninnikov, A. V.; Nordlund, K. Phys. Rev. B 2006, 74, 245420.  doi: 10.1103/PhysRevB.74.245420

    16. [16]

      Amorim, R. G.; Fazzio, A.; Antonelli, A.; Novaes, F. D.; da Silva, A. J. R. Nano Lett. 2007, 7, 2459.  doi: 10.1021/nl071217v

    17. [17]

      Charlier, J. C. Acc. Chem. Res. 2002, 35, 1063.  doi: 10.1021/ar010166k

    18. [18]

      Lu, X.; Chen, Z. F.; Schleyer, P. R. J. Am. Chem. Soc. 2005, 127, 20.  doi: 10.1021/ja0447053

    19. [19]

      Goclon, J.; Kozlowska, M.; Rodziewicz, P. Chem. Phys. Chem. 2015, 16, 2775.

    20. [20]

      Zhang, S.; Mielke, S. L.; Khare, R.; Troya, D.; Ruoff, R. S.; Schatz, G. C.; Belytschko, T. Phys. Rev. B 2005, 71, 115403.  doi: 10.1103/PhysRevB.71.115403

    21. [21]

      Dumitrica, T.; Hua, M.; Yakobson, B. I. Proc. Natl. Acad. Sci. 2006, 103, 6105.  doi: 10.1073/pnas.0600945103

    22. [22]

      Sammalkorpi, M.; Krasheninnikov, A.; Kuronen, A.; Nordlund, K.; Kaski, K. Phys. Rev. B 2004, 70, 245416.  doi: 10.1103/PhysRevB.70.245416

    23. [23]

      Zhou, R. L.; He, H. Y.; Pan, B. C. Phys. Rev. B 2007, 75, 113401.  doi: 10.1103/PhysRevB.75.113401

    24. [24]

      He, H. Y.; Pan, B. C. Phys. E 2008, 40, 542.  doi: 10.1016/j.physe.2007.08.015

    25. [25]

      He, H. Y.; Pan, B. C. J. Phys. Chem. C 2008, 112, 18876.  doi: 10.1021/jp806265q

    26. [26]

      Terrones, M.; Terrones, H.; Banhart, F.; Charlier, J. C.; Ajayan, P. M. Science 2000, 288, 1226.  doi: 10.1126/science.288.5469.1226

    27. [27]

      Lu, A. J.; Pan, B. C. Phys. Rev. B 2005, 71, 165416.  doi: 10.1103/PhysRevB.71.165416

    28. [28]

      Li, W.; Lu, X. M.; Li, G. Q.; Ma, J. J.; Yu, Z. P.; Chen, J. F.; Pan, Z. L.; He, Q. Y. Appl. Surf. Sci. 2016, 364, 560.  doi: 10.1016/j.apsusc.2015.12.177

    29. [29]

      Zhou, Q. X.; Yang, X.; Fu, Z. B.; Wang, C. Y.; Yuan, L.; Zhang, H.; Tang, Y. J. Phys. E 2015, 65, 77.  doi: 10.1016/j.physe.2014.07.005

    30. [30]

      Goclon, J.; Kozlowska, M.; Rodziewicz, P. Chem. Phys. Chem. 2015, 16, 2775.

    31. [31]

      He, H. Y.; Pan, B. C. Front. Phys. 2009, 4, 297.

    32. [32]

      Shukla, P. K.; Mishra, P. C. Chem. Phys. 2010, 369, 101.  doi: 10.1016/j.chemphys.2010.03.011

    33. [33]

      Zhuang, H. L.; Zheng, G. P.; Soh, A. K. Comp. Mater. Sci. 2008, 43, 823.  doi: 10.1016/j.commatsci.2008.01.071

    34. [34]

      Inntam, C.; Limtrakul, J. J. Phys. Chem. C 2010, 114, 21327.  doi: 10.1021/jp109098q

    35. [35]

      Sozykin, S. A.; Beskachko, V. P.; Vyatkin, G. P. Mater. Sci. Forum. 2016, 843, 132.  doi: 10.4028/www.scientific.net/MSF.843

    36. [36]

      Orellana, W. Phys. Rev. B 2009, 80, 075421.  doi: 10.1103/PhysRevB.80.075421

    37. [37]

      Chen, C. H.; Huang, C. C. Sep. Purif. Technol. 2009, 65, 305.  doi: 10.1016/j.seppur.2008.10.048

    38. [38]

      Jia, G. X.; Pan, F.; Bao, J. X.; Song, X. W.; Zhang, Y. F. Surf. Sci. 2015, 633, 29.  doi: 10.1016/j.susc.2014.11.018

    39. [39]

      Li, J. Q.; Jia, G. X.; Zhang, Y. F. Chem. Eur. J. 2007, 13, 6430.  doi: 10.1002/(ISSN)1521-3765

    40. [40]

      Jia, G. X.; Li, J. Q.; Zhang, Y. F. Acta Chim. Sinica 2005, 63, 97(in Chinese).
       

    41. [41]

      Li, J. Q.; Jia, G. X.; Zhang, Y. F.; Chen, Y. Chem. Mater. 2006, 18, 3579.  doi: 10.1021/cm060563v

    42. [42]

      Chen, Y.; Li, J. Q.; Hu, C. L. J. Phys. Chem. C 2008, 112, 18787.  doi: 10.1021/jp805524n

    43. [43]

      Chen, Y.; Li, J. Q.; Chen, L.G. J. Theor. Comput. Chem. 2008, 7, 681.  doi: 10.1142/S0219633608004052

    44. [44]

      Jia, G. X.; Li, J. Q.; Chen, L. G.; Li, Y.; Ding, K. N.; Zhang, Y. F. Inter. J. Quant. Chem. 2009, 109, 668.  doi: 10.1002/qua.v109:4

    45. [45]

      Jia, G. X.; Li, X. G.; Song, X. W.; Li, J. Q.; Chen, Y. Surf. Sci. 2013, 608, 122.  doi: 10.1016/j.susc.2012.09.025

    46. [46]

      Jia, G. X.; Pan, F.; Bao, J. X.; Song, X. W.; Zhang, Y. F. Surf. Sci. 2015, 633, 29.  doi: 10.1016/j.susc.2014.11.018

    47. [47]

      Jia, G. X.; Li, L.; Wang, X. X.; Sun, S. S.; Bao, J. X.; An, S. L. "Curvature and Size Effects on Reactivities of Mono-to Octa-Vacancies in a (5, 5) Single-Walled Carbon nanotube" Chinese J. Struc. Chem. In Press.

    48. [48]

      Hohenberg, P.; Kohn, W. Phys. Rev. 1964, 136, B864.  doi: 10.1103/PhysRev.136.B864

    49. [49]

      Kohn, W.; Sham, L. J. Phys. Rev. 1965, 140, A1133.  doi: 10.1103/PhysRev.140.A1133

    50. [50]

      Kresse, G.; Furthmller, J. Phys. Rev. B 1996, 54, 11169.  doi: 10.1103/PhysRevB.54.11169

    51. [51]

      Kresse, G.; Hafner, J. Phys. Rev. B 1993, 47, 588.  doi: 10.1103/PhysRevA.47.588

  • 加载中
    1. [1]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    2. [2]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    3. [3]

      Bowen Yang Rui Wang Benjian Xin Lili Liu Zhiqiang Niu . C-SnO2/MWCNTs Composite with Stable Conductive Network for Lithium-based Semi-Solid Flow Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100015-. doi: 10.3866/PKU.WHXB202310024

    4. [4]

      Haihua Yang Minjie Zhou Binhong He Wenyuan Xu Bing Chen Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100

    5. [5]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    6. [6]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    7. [7]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    8. [8]

      Shenhao QIUQingquan XIAOHuazhu TANGQuan XIE . First-principles study on electronic structure, optical and magnetic properties of rare earth elements X (X=Sc, Y, La, Ce, Eu) doped with two-dimensional GaSe. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2250-2258. doi: 10.11862/CJIC.20240104

    9. [9]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    10. [10]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    11. [11]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    12. [12]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    13. [13]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    14. [14]

      Qinjin DAIShan FANPengyang FANXiaoying ZHENGWei DONGMengxue WANGYong ZHANG . Performance of oxygen vacancy-rich V-doped MnO2 for high-performance aqueous zinc ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 453-460. doi: 10.11862/CJIC.20240326

    15. [15]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    16. [16]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    17. [17]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    18. [18]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    19. [19]

      Yuting Zhang Zhiqian Wang . Methods and Case Studies for In-Depth Learning of the Aldol Reaction Based on Its Reversible Nature. University Chemistry, 2024, 39(7): 377-380. doi: 10.3866/PKU.DXHX202311037

    20. [20]

      Yaping Li Sai An Aiqing Cao Shilong Li Ming Lei . The Application of Molecular Simulation Software in Structural Chemistry Education: First-Principles Calculation of NiFe Layered Double Hydroxide. University Chemistry, 2025, 40(3): 160-170. doi: 10.12461/PKU.DXHX202405185

Metrics
  • PDF Downloads(4)
  • Abstract views(833)
  • HTML views(111)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return