Citation: Meng Chao, Wang Hua, Wu Yubin, Fu Xianzhi, Yuan Rusheng. Study on Selective Photocatalytic Oxidation of Ethanol During TiO2 Promoted Water-Splitting Process[J]. Acta Chimica Sinica, ;2017, 75(5): 508-513. doi: 10.6023/A16110641 shu

Study on Selective Photocatalytic Oxidation of Ethanol During TiO2 Promoted Water-Splitting Process

  • Corresponding author: Wu Yubin, yuanrs@fzu.edu.cn
  • Received Date: 28 November 2016

    Fund Project: the Independent Research Project of State Key Laboratory of Photocatalysis on Energy and Environment 2014B01the National Natural Science Foundation of China 21643009the National Key Technologies R & D Program of China 2014BAC13B03the Natural Science Foundation of Fujian Province of China 2015J01046

Figures(4)

  • In this work, the reaction mechanism of photocatalytic oxidation of sacrificial ethanol during water-splitting process by titanium dioxide (TiO2) has been studied. The pure rutile TiO2 or mixed-phase structure titania (P25) was employed as the typical photocatalyst in ethanol oxidation. The as-obtained results showed that the formation of 2, 3-butanediol over TiO2 in heterogeneous systems is mainly due to the photochemical reaction proceeded between acetaldehyde molecule and ethanol molecule instead of the direct coupling of α-hydroxyethyl radicals. This is different from the early work claimed that the fundamental process to produce 2, 3-butanediol is based on the direct coupling of α-hydroxyethyl radicals generated by TiO2 oxidation. The photochemical reaction between acetaldehyde molecule and ethanol molecule to form 2, 3-butanediol can also occur when the concentration of the solid catalyst was reduced to certain degree if using P25 as catalyst in heterogeneous model, and the selectivity of 2, 3-butanediol would change from ca. 60% to 0% when enlarging the concentration of P25 step by step. However, the selectivity of 2, 3-butanediol is relatively invariable when the concentration of catalyst was changed if using rutile as photocatalyst. We thought that the distinct diffusing behaviors for mobile ·OHf and surface bound ·OHs generated on different titania can explain the varied selectivity when the solid concentration of TiO2 changed. The generation and diffusion of ·OH from the surface of P25 (80% anatase) to bulk solution is a key process to inhibit the direct coupling of α-hydroxyethyl radicals to produce acetaldehyde or further overoxidation products, and the reaction zone of ·OHf depends on the concentration of P25. For the case of rutile TiO2 promoted reaction, the lack of mobile ·OHf on rutile TiO2 makes the photochemical reaction between acetaldehyde molecule and ethanol molecule more facile to occur in bulk solution since the surface bound ·OHs can only have chance to attack the surface adsorbed substrates. This may be an important reason to explain why the selectivity of 2, 3-butanediol in ethanol oxidation was not influenced significantly by the variation of rutile TiO2 concentration. All the results regarding ethanol transformation during photocatalytic process achieved here cast some light on the mechanistic understanding of the reactions proceeded on the surface of solid catalyst in heterogeneous model and in the bulk solution when both catalytic step and photochemical step existed simultaneously.
  • 加载中
    1. [1]

      Pan, C.; Gu, Z.-Z.; Dong, L. Acta Chim. Sinica 2009, 67, 1981.  doi: 10.3321/j.issn:0567-7351.2009.17.007
       

    2. [2]

      Lv, X.-J.; Xu, Y.-M.; Wang, Z.; Zhao, J.-C.; Wu, Y.-D. Acta Chim. Sinica 2004, 62, 1455.  doi: 10.3866/PKU.WHXB20041211
       

    3. [3]

      Li, Y.-J.; Cao, T.-P.; Wang, C.-H.; Shao, C.-L. Acta Chim. Sinica 2011, 69, 2597.
       

    4. [4]

      Wan, Z.-Q.; Zheng, S.-N.; Jia, C.-Y.; Yan, W. Acta Chim. Sinica 2009, 67, 403.  doi: 10.3321/j.issn:0251-0790.2009.02.035
       

    5. [5]

      Guo, Q.; Xu, C.-B.; Ren, Z.-F.; Yang, W.-S.; Ma, Z.-B.; Dai, D.-X.; Fan, H.-J.; Minton, T. K.; Yang, X.-M. J. Am. Chem. Soc. 2012, 134, 13366.  doi: 10.1021/ja304049x

    6. [6]

      Xu, C.-B.; Yang, W.-S.; Ren, Z.-F.; Dai, D.-X.; Guo, Q.; Minton, T. K.; Yang, X.-M. J. Am. Chem. Soc. 2013, 135, 19039.  doi: 10.1021/ja4114598

    7. [7]

      Bamwenda, G. R.; Tsubota, S.; Nakamura, T.; Haruta, M. J. Photochem. Photobiol. A 1995, 89, 177.  doi: 10.1016/1010-6030(95)04039-I

    8. [8]

      Idriss, H.; Seebauer, E. G. J. Mol. Catal. A: Chem. 2000, 152, 201.  doi: 10.1016/S1381-1169(99)00297-6

    9. [9]

      Llorca, J.; Homs, N.; Sales, J.; Piscina, P. R. D. L. J. Catal. 2002, 209, 306.  doi: 10.1006/jcat.2002.3643

    10. [10]

      Murdoch, M.; Waterhouse, G. I. N.; Nadeem, M. A.; Metson, J. B.; Keane, M. A.; Howe, R. F.; Llorca, J.; Idriss, H. Nat. Chem. 2011, 3, 489.

    11. [11]

      Meng, C.; Yang, K.; Fu, X.-Z.; Yuan, R.-S. ACS Catal. 2015, 5, 3760.  doi: 10.1021/acscatal.5b00644

    12. [12]

      Lu, H.-Q.; Zhao, J.-H.; Li, L.; Gong, L.-M.; Zheng, J.-F.; Zhang, L.-X.; Wang, Z.-J.; Zhang, J.; Zhu, Z.-P. Energy Environ. Sci. 2011, 4, 3384.  doi: 10.1039/c1ee01476e

    13. [13]

      Yang, P.-J.; Zhao, J.-H.; Cao, B.-Y.; Li, L.; Wang, J.-Z.; Tian, X.-X.; Jia, S.-P.; Zhu, Z.-P. ChemCatChem 2015, 7, 2384.  doi: 10.1002/cctc.201500326

    14. [14]

      Wang, J.; Yang, P.-J.; Cao, B.-Y.; Zhao, J.-H.; Zhu, Z.-P. Appl. Surf. Sci. 2015, 325, 86.  doi: 10.1016/j.apsusc.2014.10.143

    15. [15]

      Lu, H.-Q.; Zhao, B.-B.; Zhang, D.; Lv, Y.-L.; Shi, B.-P.; Shi, X. C.; Wen, J.; Yao, J.-F.; Zhu, Z.-P. J. Photochem. Photobiol. A 2013, 272, 1.  doi: 10.1016/j.jphotochem.2013.08.021

    16. [16]

      Cao, B.-Y.; Zhang, J.; Zhao, J.-H.; Wang, Z.-J.; Yang, P.-J.; Zhang, H.-X.; Li, L.; Zhu, Z.-P. ChemCatChem 2014, 6, 1673.  doi: 10.1002/cctc.v6.6

    17. [17]

      Li, N.; Yan, W. J.; Yang, P.-J.; Zhang, H.-X.; Wang, Z.-J.; Zheng, J.-F.; Jia, S.-P.; Zhu, Z.-P. Green Chem. 2016, 18, 6029.  doi: 10.1039/C6GC00883F

    18. [18]

      Ohno, T.; Izumi, S.; Fujihara, K.; Masaki, Y.; Matsumura, M. J. Phys. Chem. B 2000, 104, 6801.  doi: 10.1021/jp993184g

    19. [19]

      Chai, Z.-G.; Zeng, T.-T.; Li, Q.; Lu, L.-Q.; Xiao, W.-J.; Xu, D.-S. J. Am. Chem. Soc. 2016, 138, 10128.  doi: 10.1021/jacs.6b06860

    20. [20]

      Shimizu, Y.; Sugimoto, S.; Kawanishi, S.; Suzuki, N. Bull. Chem. Soc. Jpn. 1991, 64, 3607.  doi: 10.1246/bcsj.64.3607

    21. [21]

      Asmus, K. D.; Mockel, H.; Henglein, A. J. Phys. Chem. 1973, 77, 1218.  doi: 10.1021/j100629a007

    22. [22]

      Sun, L. Z.; Bolton, J. R. J. Phys. Chem. 1996, 100, 4127.  doi: 10.1021/jp9505800

    23. [23]

      Wu, W.-M.; Wen, L.-R.; Shen, L.-J.; Liang, R.-W.; Yuan, R.-S.; Wu, L. Appl. Catal. B 2013, 130~131, 163.

    24. [24]

      Wu, W.-M.; Liu, G.; Liang, S.-J.; Chen, Y.; Shen, L.-J.; Zheng, H.-R.; Yuan, R.-S.; Hou, Y.-D.; Wu, L. J. Catal. 2012, 290, 13.  doi: 10.1016/j.jcat.2012.02.005

    25. [25]

      Xu, Y.; Schoonen, M. A. A. Am. Mineral. 2000, 85, 543.  doi: 10.2138/am-2000-0416

    26. [26]

      Fujishima, A.; Zhang, X.; Tryk, D. A. Surf. Sci. Rep. 2008, 63, 515.  doi: 10.1016/j.surfrep.2008.10.001

    27. [27]

      Li, R.-G.; Weng, Y.-X.; Zhou, X.; Wang, X.-L.; Mi, Y.; Chong, R.-F.; Han, H.-X.; Li, C. Energy Environ. Sci. 2015, 8, 2377.  doi: 10.1039/C5EE01398D

    28. [28]

      Kavan, L.; Gratzel, M.; Gilbert, S. E.; Klemenz, C.; Scheel, J. J. Am. Chem. Soc. 1996, 118, 6716.  doi: 10.1021/ja954172l

    29. [29]

      Yamakata, A.; Ishibashi, T. A.; Onishi, H. Chem. Phys. 2007, 339, 133.  doi: 10.1016/j.chemphys.2007.05.010

    30. [30]

      Xu, M.; Gao, Y.; Moreno, E. M.; Kunst, M.; Muhler, M.; Wang, Y.; Idriss, H.; Wçll, C. Phys. Rev. Lett. 2011, 106, 138302.  doi: 10.1103/PhysRevLett.106.138302

    31. [31]

      Tang, H.; Prasad, K.; Sanjines, R.; Schmid, P. E.; Levy, F. J. Appl. Phys. 1994, 75, 2042.  doi: 10.1063/1.356306

    32. [32]

      Luttrell, T.; Halpegamage, S.; Tao, J.; Kramer, A.; Sutter, E.; Batzill, M. Sci. Rep. 2014, 4, 4043.

    33. [33]

      Goto, H.; Hanada, Y.; Ohno, T.; Matsumura, M. J. Catal. 2004, 225, 223.  doi: 10.1016/j.jcat.2004.04.001

    34. [34]

      Bui, T. D.; Kimura, A.; Ikeda, S.; Matsumura, M. J. Am. Chem. Soc. 2010, 132, 8453.  doi: 10.1021/ja102305e

    35. [35]

      Kim, W.; Tachikawa, T.; Moon, G. H.; Majima, T.; Choi, W. Angew. Chem., Int. Ed. 2014, 53, 14036.  doi: 10.1002/anie.v53.51

  • 加载中
    1. [1]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    2. [2]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    3. [3]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    4. [4]

      Qin Hu Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024

    5. [5]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    6. [6]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    7. [7]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    8. [8]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    9. [9]

      Jianyin He Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030

    10. [10]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    11. [11]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    12. [12]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    13. [13]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    14. [14]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    15. [15]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    16. [16]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    17. [17]

      Yang Xia Kangyan Zhang Heng Yang Lijuan Shi Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-. doi: 10.3866/PKU.WHXB202407012

    18. [18]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    19. [19]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    20. [20]

      Shengjuan Huo Xiaoyan Zhang Xiangheng Li Xiangning Li Tianfang Chen Yuting Shen . Unveiling the Marvels of Titanium: Popularizing Multifunctional Colored Titanium Product Films. University Chemistry, 2024, 39(5): 184-192. doi: 10.3866/PKU.DXHX202310127

Metrics
  • PDF Downloads(23)
  • Abstract views(2691)
  • HTML views(761)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return