Citation: Zheng Yuan, Luo Jing, Wei Wei, Liu Xiaoya. Polyaniline-graphene Hollow Spheres based on Graphene Stabilized Pickering Emulsions[J]. Acta Chimica Sinica, ;2017, 75(4): 391-397. doi: 10.6023/A16110624 shu

Polyaniline-graphene Hollow Spheres based on Graphene Stabilized Pickering Emulsions

  • Corresponding author: Luo Jing, jingluo19801007@126.com
  • Received Date: 25 November 2016

    Fund Project: the Six Talents Peak Project of Jiangsu Province XNY-012the National Natural Science Foundation of China 51573072

Figures(10)

  • In recent years, hybrid nanomaterials of graphene and polyaniline have attracted extensive interest and have been considered as promising electrode materials for supercapacitor combining the advantages of both materials with synergistic effects. In contrast to the well-developed two-dimensional planar structure of graphene-PANI, the pursuit of hollow gra-phene-PANI hybrid structure is relatively less investigated. The hollow micro/nanostructured graphene-PANI materials with the nanoscale shell, inner cavity and pore structures, is highly expected to exhibit remarkable enhanced supercapacitor performance owing to the enhanced specific surface area and shortened diffusion length for both charge and mass transport. In this work, a novel kind of graphene-polyaniline hollow capsules (PANI-SGR HS) was prepared via Pickering emulsion polymerization using sulfonated graphene (SGR) as Pickering stabilizer. Amphiphilic sulfonated graphene is prepared by a covalent modification and used to stabilize oil phase containing aniline monomer. Aniline molecules were adsorbed to the oil-water interface owing to the electrostatic interaction between amino groups of aniline and sulfonic groups of SGR, which subsequently underwent interfacial polymerization at the oil/water interface upon the addition of initiator ammonium persulfate (APS). The effects of the sulfonation degree of graphene, the SGR concentration as well as the oil/water volume ratio on the stability and morphology of SGR stabilized emulsions were investigated in detail. The SGR with appropriate sulfonation degree can produce stable emulsions. The average diameter of the emulsion droplet decreased with the increasing concentration of SGR stabilizer. The emulsion stability can be improved with the increased water phase infraction. After polymerization of aniline and removal of the oil phase, three-dimensional hollow graphene-polyaniline sphere (PANI-SGR HS) was obtained. The morphology of PANI-SGR HS was observed by scanning electron microscopy (SEM). The special hollow sphere structure not only enlarged the liquid contact area but also improved charge carrier mobility. The hollow sphere modified electrode exhibited excellent performance with a specific capacitance of 480.59 F·g-1 at 1 A·g-1, which is much higher than 251 F·g-1 of the common two-dimensional stacked graphene-polyaniline film. This novel three-dimensional PANI-SGR HS material may have potential applications in energy storage.
  • 加载中
    1. [1]

      Zhu, Y.; Murali, S.; Cai, W.; Li, X.; Suk, J.; Potts, J.; Rouff, R. Adv. Mater. 2010, 22, 3906.  doi: 10.1002/adma.201001068

    2. [2]

      He, Q.; Wu, S.; Yin, Z.; Zhang, H. Chem. Sci. 2012, 3, 1764.  doi: 10.1039/c2sc20205k

    3. [3]

      Yang, L.; Tang, Y.; Yan, D.; Liu, T.; Liu, C.; Luo, S. ACS Appl. Mater. Interfaces 2015, 8, 169.

    4. [4]

      Tong, Z.; Fang, S.; Zheng, H.; Zhang, X. Acta Chim. Sinica 2016, 74, 185.
       

    5. [5]

      Gao, H.; Lu, Q.; Liu, N.; Wang, X.; Wang, F. J. Mater. Chem. A 2015, 3, 7215.  doi: 10.1039/C5TA00379B

    6. [6]

      Wang, L.; Lu, X.; Lei, S.; Song, Y. J. Mater. Chem. A 2014, 2, 4491.  doi: 10.1039/C3TA13462H

    7. [7]

      Luo, J.; Chen, Y.; Ma, Q.; Liu, R.; Liu, X. J. Mater. Chem. C 2014, 2, 4818.  doi: 10.1039/c4tc00126e

    8. [8]

      Domingues, S. H.; Salvatierra, R. V.; Oliveira, M. M.; Zarbin, A. J. Chem. Commun. 2011, 47, 2592.  doi: 10.1039/C0CC04304D

    9. [9]

      Sun, J.; Zhu, Z.; Lai, J.; Luo, J.; Liu, X. Chem. J. Chin. Univ. 2015, 36, 581.

    10. [10]

      Fan, X.; Yang, Z.; Liu, Z. Chin. J. Chem. 2016, 34, 107.  doi: 10.1002/cjoc.v34.1

    11. [11]

      Du, P.; Liu, H. C.; Yi, C.; Wang, K.; Gong, X. ACS Appl. Mater. Interfaces 2015, 7, 23932.  doi: 10.1021/acsami.5b06261

    12. [12]

      Yang, F.; Xu, M.; Bao, S. J.; Wei, H.; Chai, H. Electrochim. Acta 2014, 137, 381.  doi: 10.1016/j.electacta.2014.06.017

    13. [13]

      Fan, W.; Zhang, C.; Tjiu, W. W.; Pramoda, K. P.; He, C.; Liu, T. ACS Appl. Mater. Interfaces 2013, 5, 3382.  doi: 10.1021/am4003827

    14. [14]

      Liu, Z.; Chen, W.; Fan, X.; Yu, J.; Zhao, Y. Chin. J. Chem. 2016, 34, 839.  doi: 10.1002/cjoc.v34.8

    15. [15]

      Fan, W., Xia, Y. Y.; Tjiu, W. W.; Pallathadka, P. K.; He, C.; Liu, T. J. Power Sources 2013, 243, 973.  doi: 10.1016/j.jpowsour.2013.05.184

    16. [16]

      Luo, J.; Ma, Q.; Gu, H.; Zheng, Y.; Liu, X. Electrochim. Acta 2015, 173, 184.  doi: 10.1016/j.electacta.2015.05.053

    17. [17]

      Trung, N. B.; Van Tam, T.; Kim, H. R.; Hur, S. H.; Kim, E. J.; Choi, W. M. Chem. Eng. J. 2014, 255, 89.  doi: 10.1016/j.cej.2014.06.028

    18. [18]

      Binks, B. P. Curr. Opin. Colloid Interface Sci. 2002, 7, 21.  doi: 10.1016/S1359-0294(02)00008-0

    19. [19]

      Wei, W.; Wang, T.; Luo, J.; Zhu, Y.; Gu, Y.; Liu, X. Colloids Surf., A 2015, 487, 58.  doi: 10.1016/j.colsurfa.2015.09.060

    20. [20]

      McCoy, T. M.; Pottage, M. J.; Tabor, R. F. J. Phys. Chem. C 2014, 118, 4529.  doi: 10.1021/jp500072a

    21. [21]

      Hu, Z.; Marway, H. S.; Kasem, H.; Pelton, R.; Cranston, E. D. ACS Macro Lett. 2016, 5, 185.  doi: 10.1021/acsmacrolett.5b00919

    22. [22]

      Kim, S. D.; Zhang, W. L.; Choi, H. J. J. Mater. Chem. C 2014, 2, 7541.  doi: 10.1039/C4TC01040J

    23. [23]

      Yin, G.; Zheng, Z.; Wang, H.; Du, Q.; Zhang, H. J. Colloid Interface Sci. 2013, 394, 192.  doi: 10.1016/j.jcis.2012.11.024

    24. [24]

      Fei, X.; Xia, L.; Chen, M.; Wei, W.; Luo, J.; Liu, X. Materials 2016, 9, 731.  doi: 10.3390/ma9090731

    25. [25]

      Wan, W.; Zhao, Z.; Hughes, T. C.; Qian, B.; Peng, S.; Hao, X.; Qiu, J. Carbon 2015, 85, 16.  doi: 10.1016/j.carbon.2014.12.058

    26. [26]

      Chen, X.; Eggers, P. K.; Slattery, A. D.; Ogden, S. G.; Raston, C. L. J. Colloid Interface Sci. 2014, 430, 174.  doi: 10.1016/j.jcis.2014.05.048

    27. [27]

      Zhang, Y.; Zheng, X.; Wang, H.; Du, Q. J. Mater. Chem. A 2014, 2, 5304.  doi: 10.1039/c3ta15242a

    28. [28]

      Luo, J.; Jiang, S.; Liu, R.; Zhang, Y.; Liu, X. Electrochim. Acta 2013, 96, 103.  doi: 10.1016/j.electacta.2013.02.072

    29. [29]

      Yang, J.; Shi, T.; Jin, W.; Zou, Y. Acta Chim. Sinica 2008, 66, 552.  doi: 10.3321/j.issn:0567-7351.2008.05.011
       

    30. [30]

      Zhu, Y.; Sun, J.; Yi, C.; Wei, W.; Liu, X. Soft Matter 2016, 12, 7577.  doi: 10.1039/C6SM01263A

    31. [31]

      Binks, B. P.; Lumsdon, S. O. Langmuir 2000, 16, 8622.  doi: 10.1021/la000189s

    32. [32]

      Zheng, Z.; Zheng, X.; Wang, H.; Du, Q. ACS Appl. Mater. Interfaces 2013, 5, 7974.  doi: 10.1021/am4020549

    33. [33]

      Zheng, X.; Zhang, Y.; Wang, H.; Du, Q. Macromolecules 2014, 47, 6847.  doi: 10.1021/ma501253u

    34. [34]

      Aveyard, R.; Binks, B. P.; Clint, J. H. Adv. Colloid Interface Sci. 2003, 100, 503.

    35. [35]

      Yi, W.; Wu, H.; Wang, H.; Du, Q. Langmuir 2016, 32, 982.  doi: 10.1021/acs.langmuir.5b04477

    36. [36]

      Luo, J.; Jiang, S.; Wu, Y.; Chen, M.; Liu, X. J. Polym. Sci., Part A:Polym. Chem. 2012, 50, 4888.  doi: 10.1002/pola.v50.23

    37. [37]

      Fan, W.; Zhang, C.; Tjiu, W. W.; Pramoda, K. P.; He, C.; Liu, T. ACS Appl. Mater. Interfaces 2013, 5, 3382.  doi: 10.1021/am4003827

    38. [38]

      Zhou, H.; Sun, Y.; Li, G.; Chen, S.; Lu, Y. Polymer 2014, 55, 4459.  doi: 10.1016/j.polymer.2014.06.079

    39. [39]

      Zang, X.; Li, X.; Zhu, M.; Li, X.; Zhen, Z.; He, Y.; Zhu, H. Na-noscale 2015, 7, 7318.

    40. [40]

      Mu, B.; Zhang, W.; Wang, A. J. Nanopart. Res. 2014, 16, 1.

    41. [41]

      Coşkun, E.; Zaragoza-Contreras, E. A.; Salavagione, H. J. Carbon 2012, 50, 2235.  doi: 10.1016/j.carbon.2012.01.041

  • 加载中
    1. [1]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    2. [2]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    3. [3]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    4. [4]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    5. [5]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    6. [6]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    7. [7]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    8. [8]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    9. [9]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    10. [10]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    11. [11]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    12. [12]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    13. [13]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    14. [14]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    15. [15]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    16. [16]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    17. [17]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    18. [18]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    19. [19]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    20. [20]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

Metrics
  • PDF Downloads(8)
  • Abstract views(1644)
  • HTML views(296)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return