Citation: Zhang Zhaoxiang, Luan Wenxiu, Zhang Chaoying, Liu Yujie. Capillary Electrophoresis Immunoassay by Gold Nanoparticles Assisted Signal Generation and Sequential Stacking[J]. Acta Chimica Sinica, ;2017, 75(4): 403-407. doi: 10.6023/A16110599 shu

Capillary Electrophoresis Immunoassay by Gold Nanoparticles Assisted Signal Generation and Sequential Stacking

  • Corresponding author: Zhang Zhaoxiang, qustzhzhx@126.com
  • Received Date: 12 November 2016

    Fund Project: the National Natural Science Foundation of China 21105051

Figures(6)

  • Brevetoxins (BTXs) are highly toxic biotoxin and can cause human intoxication through food chain. The detection of brevetoxins is very difficult due to lack of optical and electrochemical (EC) signal. In this work, we developed an ultrasensitive capillary electrophoresis (CE) immunoassay and EC method for the determination of BTX-B by gold nanoparticles (AuNPs) assisted signal generation and sequential stacking concentration. The AuNPs were synthesized by sodium citrate reduction of HAuCl4 in water. The AuNPs were conjugated with horseradish peroxidase (HRP) and antibody (Ab) to immobilize the HRP and Ab on the AuNPs surface with the molar ratio of HRP/Ab of 9/1. The Ab conjugated on the AuNPs surface incubated with limited amount of BTX-B in standard solution or shellfish samples to produce immunocomplex on the basis of the noncompetitive immunoreactions. Before sample injection, a NaOH plug with 10 cm height difference for 150 s was hydrodynamically injected into the separation capillary. After incubation for 40 min at room temperature, the immune sample was then electrokinetically injected into the capillary at 10 kV for 330 s. The positively charged analytes migrated rapidly into the capillary and were neutralized and stacked at the boundary between sample and NaOH plug, which led to the first preconcentration. After sample loading, the capillary inlet vial was changed to low-pH buffer solution, and H+ in the buffer solution moved rapidly into the capillary toward cathode across the neutral analytes zone. The neutralized analytes were positively charged again and the injected analytes were further condensed. Next, the formed immunocomplex, unbound HRP-Au-Ab probe and the excess HRP were separated by CE and sensitively detected by EC detection. AuNPs were used as carriers of HRP and Ab in order to carry out EC detection with the EC signals derived from catalytic reaction of the carried HRP to the H2O2/o-aminophenol system. Simultaneously, the EC signal was highly amplified by improving the HRP/Ab molar ratio on the surface of AuNPs. The proposed method by AuNPs assisted signal generation and on-line sequential concentration realized the sensitive and rapid determination of BTX-B in shellfish samples. In the range between 0.1 and 120 ng/mL, the assay allowed quantitative determination of BTX-B and the limit of detection (LOD) was 26 ng/L. The LOD was 365-fold lower than ELISA method. The amplified sensitivity was enhanced by high HRP/Ab ratio at AuNPs surface and sequential preconcentration. The proposed method provides a convenient and sensitive analytical approach for the determination of trace BTX in complex samples.
  • 加载中
    1. [1]

      Official Methods of Analysis, 14th ed., Association of Official Analytical Chemists, Arlington, VA, 1984, Section 18.086.

    2. [2]

      Hua, Y.; Lu, W.; Henry, M. S.; Pierce, R. H.; Cole, R. B. Anal. Chem. 1995, 67, 1815.  doi: 10.1021/ac00107a010

    3. [3]

      Nozawa, A.; Tsuji, K.; Ishida, H. Toxicon 2003, 42, 91.  doi: 10.1016/S0041-0101(03)00123-5

    4. [4]

      Wang, Z.; Plakas, S. M.; Said, K. R. E.; Jester, E. L. E.; Granade, H. R.; Dickey, R. W. Toxicon 2004, 43, 455.  doi: 10.1016/j.toxicon.2004.02.017

    5. [5]

      Wang, Z.; Ramsdell, J. S. Chem. Res. Toxicol. 2011, 24, 54.  doi: 10.1021/tx1002854

    6. [6]

      Naar, J.; Bourdelais, A.; Tomas, C.; Kubanek, J.; Whitney, P. L.; Flewelling, L. Environ. Health Perspect. 2002, 110, 179.  doi: 10.1289/ehp.02110179

    7. [7]

      Bottein, M.-Y. D.; Fuquay, J. M.; Munday, R.; Selwood, A. I.; Ginkel, R. V.; Miles, C. O.; Loader, J. I.; Wilkins, A. L.; Ramsdell, J. S. Toxicon 2010, 55, 497.  doi: 10.1016/j.toxicon.2009.09.022

    8. [8]

      Yang, W. C.; Schmerr, M. J.; Jackman, R.; Bodemer, W.; Yeung, E. S. Anal. Chem. 2005, 77, 4489.  doi: 10.1021/ac050231u

    9. [9]

      Liu, Y.; Mei, L.; Liu, L.; Peng, L.; Chen, Y.; Ren, S. Anal. Chem. 2011, 83, 1137.  doi: 10.1021/ac103166n

    10. [10]

      Wang, X.; Song, Y.; Song, M.; Wang, Z.; Li, T.; Wang, H. Anal. Chem. 2009, 81, 7885.  doi: 10.1021/ac901681k

    11. [11]

      Zhang, X. W.; Zhang, Z. X. Toxicon 2012, 59, 626.  doi: 10.1016/j.toxicon.2012.02.011

    12. [12]

      Zhang, X. W.; Zhang, Z. X. J. Food Compos. Anal. 2012, 28, 61.  doi: 10.1016/j.jfca.2012.07.008

    13. [13]

      Zhang, X. W.; Zhang, Z. X. J. Chromatogr. Sci. 2013, 51, 107.  doi: 10.1093/chromsci/bms112

    14. [14]

      Zhang, Z. X.; Zhang, F.; Liu, Y. Acta Chim. Sinica 2012, 70, 2251(in Chinese).
       

    15. [15]

      Liu, X.; Wu, Z.; Zhang, Q.; Zhao, W.; Zong, C.; Gai, H. Anal. Chem. 2016, 88, 2119.  doi: 10.1021/acs.analchem.5b03653

    16. [16]

      Zhou, G.; Chang, J.; Pu, H.; Shi, K.; Mao, S.; Sui, X.; Ren, R.; Cui, S.; Chen, J. ACS Sens. 2016, 1, 295.  doi: 10.1021/acssensors.5b00241

    17. [17]

      Yang, H.; Fung, S.; Xu, S.; Sutherland, D. P.; Kollmann, T. R.; Liu, M.; Turvey, S. E. ACS Nano 2015, 9, 6774.  doi: 10.1021/nn505634h

    18. [18]

      Paul, A. M.; Fan, Z.; Sinha, S. S.; Shi, Y.; Le, L.; Bai, F.; Ray, P. C. J. Phys. Chem. C 2015, 119, 23669.  doi: 10.1021/acs.jpcc.5b07387

    19. [19]

      Ma, Z. Y.; Ruan, Y. F.; Xu, F.; Zhao, W. W.; Xu, J. J.; Chen, H. Y. Anal. Chem. 2016, 88, 3864.  doi: 10.1021/acs.analchem.6b00012

    20. [20]

      Harimech, P. K.; Gerrard, S. R.; El-Sagheer, A. H.; Brown, T.; Kanaras, A. G. J. Am. Chem. Soc. 2015, 137, 9242.  doi: 10.1021/jacs.5b05683

    21. [21]

      Su, S.; Sun, H.; Cao, W.; Chao, J.; Peng, H.; Zuo, X.; Yuwen, L.; Fan, C.; Wang, L. ACS Appl. Mater. Interfaces 2016, 8, 6826.  doi: 10.1021/acsami.5b12833

    22. [22]

      Wang, Q.; Zhu, H. Z.; Yang, X. H.; Wang, K. M.; Yang, L. J.; Ding, J. Acta Chim. Sinica 2012, 70, 1483(in Chinese).
       

    23. [23]

      Guo, Y.; Li, W. W.; Zheng, M. Y.; Huang, Y. Acta Chim. Sinica 2014, 72, 713(in Chinese).
       

    24. [24]

      Ambrosi, A.; Airò, F.; Merkoci, A. Anal. Chem. 2010, 82, 1151.  doi: 10.1021/ac902492c

    25. [25]

      Chang, C. W.; Tseng, W. L. Anal. Chem. 2010, 82, 2696.  doi: 10.1021/ac902342c

    26. [26]

      Chang, C. W.; Chu, S. P.; Tseng, W. L. J. Chromatogr. A 2010, 1217, 7800.  doi: 10.1016/j.chroma.2010.10.023

    27. [27]

      Miao, P.; Ning, L.; Li, X. Anal. Chem. 2013, 85, 7966.  doi: 10.1021/ac401762e

    28. [28]

      Zhang, Z. X.; Li, X.; Ge, A.; Zhang, F.; Sun, X.; Li, X. Biosens. Bioelectron. 2013, 41, 452.  doi: 10.1016/j.bios.2012.09.005

    29. [29]

      Bradford, M. M. Anal. Biochem. 1976, 72, 248.  doi: 10.1016/0003-2697(76)90527-3

    30. [30]

      Wang, J.; Huang, W.; Liu, Y.; Cheng, J.; Yang, J. Anal. Chem. 2004, 76, 5393.  doi: 10.1021/ac049891+

  • 加载中
    1. [1]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    2. [2]

      Zhengli Hu Jia Wang Yi-Lun Ying Shaochuang Liu Hui Ma Wenwei Zhang Jianrong Zhang Yi-Tao Long . Exploration of Ideological and Political Elements in the Development History of Nanopore Electrochemistry. University Chemistry, 2024, 39(8): 344-350. doi: 10.3866/PKU.DXHX202401072

    3. [3]

      Lina Liu Xiaolan Wei Jianqiang Hu . Exploration of Subject-Oriented Undergraduate Comprehensive Chemistry Experimental Teaching Based on the “STS Concept”: Taking the Experiment of Gold Nanoparticles as an Example. University Chemistry, 2024, 39(10): 337-343. doi: 10.12461/PKU.DXHX202405112

    4. [4]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    5. [5]

      Liwei Wang Guangran Ma Li Wang Fugang Xu . A Comprehensive Analytical Chemistry Experiment: Colorimetric Detection of Vitamin C Using Nanozyme and Smartphone. University Chemistry, 2024, 39(8): 255-262. doi: 10.3866/PKU.DXHX202312094

    6. [6]

      Hongbo Zhang Yihong Tang Suxia Zhang Yuanting Li . Electrochemical Monitoring of Photocatalytic Degradation of Phenol Pollutants: A Recommended Comprehensive Analytical Chemistry Experiment. University Chemistry, 2024, 39(6): 326-333. doi: 10.3866/PKU.DXHX202310013

    7. [7]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    8. [8]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    9. [9]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    10. [10]

      Min Gu Huiwen Xiong Liling Liu Jilie Kong Xueen Fang . Rapid Quantitative Detection of Procalcitonin by Microfluidics: An Instrumental Analytical Chemistry Experiment. University Chemistry, 2024, 39(4): 87-93. doi: 10.3866/PKU.DXHX202310120

    11. [11]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

    12. [12]

      Yongming Zhu Huili Hu Yuanchun Yu Xudong Li Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086

    13. [13]

      Liangzhen Hu Li Ni Ziyi Liu Xiaohui Zhang Bo Qin Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001

    14. [14]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    15. [15]

      Yong Zhou Jia Guo Yun Xiong Luying He Hui Li . Comprehensive Teaching Experiment on Electrochemical Corrosion in Galvanic Cell for Chemical Safety and Environmental Protection Course. University Chemistry, 2024, 39(7): 330-336. doi: 10.3866/PKU.DXHX202310109

    16. [16]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    17. [17]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    18. [18]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    19. [19]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    20. [20]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

Metrics
  • PDF Downloads(3)
  • Abstract views(919)
  • HTML views(139)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return