Citation: Yang Zhongbo, Li Sujia, Luo Sanzhong. Total Synthesis of (±)-Hongoquercin A via Visible-Light-Mediated Organocatalytic Polyene Cyclization[J]. Acta Chimica Sinica, ;2017, 75(4): 351-354. doi: 10.6023/A16110591 shu

Total Synthesis of (±)-Hongoquercin A via Visible-Light-Mediated Organocatalytic Polyene Cyclization

  • Corresponding author: Luo Sanzhong, luosz@iccas.ac.cn
  • Received Date: 8 November 2016

Figures(3)

  • Advances in the strategy and methodology of visible light photocatalysis have begun to alter the way how organic chemists address the synthetic problems. These powerful methods have enabled the development of novel reaction schemes and approaches (mostly via radical path) for the total synthesis of nature products under visible light photoredox catalysis. Terpenoids, possessing intriguing biological activities together with their structural diversity, have remained as attractive targets for chemists. On the basis of their biogenetic pathways, polyene cyclization is the most straightforward pathway to attain terpenoid skeletons. Most recently, a few examples of stereoselective radical polyene cyclizations have been developed. However, most of the radical approaches suffer from the requirement for stoichiometric loading of metals or radical initiators. And in many cases, low yields are obtained with complicated reaction mixtures, which cumber further development along this line especially in nature products synthesis. In our previous work, we have developed a visible-light-mediated, stereoselective organocatalytic cyclization of polyenes. The wide scope as well as the high chemoselectivity inspires us to apply this method in the total synthesis of terpenoid natural products. Thus we report here total synthesis of (±)-Hongoquercin A (1), starting from trans, trans-farnesol (4) in 7 steps and with overall 14.4% yield. Our developed visible-light-mediated redox organocatalytic methodology is employed as the key step to construct multiple ring-fused skeleton of 1 in one step.[To a flame-dried Schlenk tube equipped with a magnetic stir bar was added 3-hydroxy-5-methyl-2-((2E, 6E)-3, 7, 11-trimethyl-dodeca-2, 6, 10-trien-1-yl) cyclohex-2-enone (3) (0.20 g, 0.61 mmol) and Eosin Y (4.0 mg, 0.0061 mmol). The mixture was diluted with 1.5 mL of anhydrous hexafluoroisopropanol. The reaction was irradiated with Green LEDs at room temperature for 2 h. Upon completion, the reaction mixture was concentrated in vacuo. The residue was purified by silica gel chromatography (10% EtOAc in Petroleum ether) to give 2 (ca. 60% yield, colorless oil) containing all the skeleton carbons of Hongoquercin A.
  • 加载中
    1. [1]

      (a) Nicolaou, K. C.; Vourloumis, D.; Wissinger, N.; Baran, P. S. Angew. Chem. Int. Ed. 2000, 39, 44.(b) Nicolaou, K. C.; Montagnon, T.; Snyder, S. A. Chem. Commun. 2003, 551.(c) Nicolaou, K. C.; Edmonds, D. J.; Bulger, P. G. Angew. Chem. Int. Ed. 2006, 45, 7134.(d) Maimone, T. J.; Baran, P. S. Nat. Chem. Biol. 2007, 3, 396.

    2. [2]

      For a recent review, see:(a) Yoder, R. A.; Johnston, J. N. Chem. Rev. 2005, 105, 4730; For early contributions, see:(b) Johnson, W. S.; Kinnel, R. B. J. Am. Chem. Soc. 1966, 88, 3861.(c) Tamelen, E. E. V.; McCormick, J. P. J. Am. Chem. Soc. 1969, 91, 1847.

    3. [3]

      For selected examples in this field, see:(a) Ishihara, K.; Nakamura, S.; Yamamoto, H. J. Am. Chem. Soc. 1999, 121, 4906.(b) Ishihara, K.; Ishibashi, H.; Yamamoto, H. J. Am. Chem. Soc. 2001, 123, 1505.(c) Ishibashi, H.; Ishihara, K.; Yamamoto, H. J. Am. Chem. Soc. 2004, 126, 11122.(d) Surendra, K.; Corey, E. J. J. Am. Chem. Soc. 2012, 134, 11992.(e) Zhao, Y.-J.; Li, B.; Tan, L.-J. S.; Shen, Z.-L.; Loh, T.-P. J. Am. Chem. Soc. 2010, 132, 10242.(f) Sakakura, A.; Ukai, A.; Ishihara, K. Nature 2007, 445, 900.(g) Rendler, S.; MacMillan, D. W. C. J. Am. Chem. Soc. 2010, 132, 5027.(h) Knowles, R. R.; Lin, S.; Jacobsen, E. N. J. Am. Chem. Soc. 2010, 132, 5030.(i) Mullen, C. A.; Campbell, A. N.; Gagn, M. R. Angew. Chem. Int. Ed. 2008, 47, 6011.(j) Sethofer, S. G.; Mayer, T.; Toste, F. D. J. Am. Chem. Soc. 2010, 132, 8276.(k) Schafroth, M. A.; Sarlah, D.; Krautwald, S.; Carreira, E. M. J. Am. Chem. Soc. 2012, 134, 20276.

    4. [4]

      For a recent review, see:(a) Justicia, J.; Álvarez de Cienfuegos, L.; Campaña, A. G.; Miguel, D.; Jakoby, V.; Gansäuer, A.; Cuerva, J. M. Chem. Soc. Rev. 2011, 40, 3525. For selected examples, see:(b) Rendeler, S.; MacMillan, D. W. C. J. Am. Chem. Soc. 2010, 132, 5027.(c) Handa, S.; Pattenden, G. J. Chem. Soc., Perkin Trans. 11999, 843.(d) Kates, S. A.; Dombroski, M. A.; Snider, B. B. J. Org. Chem. 1990, 55, 2427.(e) Zoretic, P. A.; Fang, H.; Ribeiro, A. A. J. Org. Chem. 1998, 63, 4779.(f) Morcillo, S. P.; Miguel, D.; Resa, S.; Martín-Lasanta, A.; Millán, A.; Choquesillo-Lazarte, D.; Gar-cía-Ruiz, J. M.; Mota, A. J.; Justicia, J.; Cuerva, J. M. J. Am. Chem. Soc. 2014, 136, 6943.(g) Gu, S.; Yan, Y.-L.; Zhao, H.-W.; Zhu, N.-Y.; Yang, D. Angew. Chem. Int. Ed. 2002, 41, 3014.(h) Heinemann, C.; Demuth, M. J. Am. Chem. Soc. 1999, 121, 4894.(i) Bunte, J. O.; Rinne, S.; Schäfer, C.; Neumann, B.; Stammlerb, H.-G.; Mattaya, J. Tetrahedron Lett. 2003, 44, 45.

    5. [5]

    6. [6]

    7. [7]

      Yang, Z.; Li, H.; Zhang, L.; Zhang, M.-T.; Cheng, J.-P.; Luo, S. Chem. Eur. J. 2015, 21, 14723.  doi: 10.1002/chem.201503118

    8. [8]

      (a) Roll, D. M.; Manning, J. K.; Carter, G. T. J. Antibiot. 1998, 51, 635. For fermentation studies, see:(b) Abbanat, D. A.; Singh, M. P.; Greenstein, M. J. Antibiot. 1998, 51, 708.

    9. [9]

      Tsujimori, H.; Bando, M.; Mori, K. Eur. J. Org. Chem. 2000, 297.

    10. [10]

      Kurdyumov, A. V.; Hsung, R. P. J. Am. Chem. Soc. 2006, 128, 6272.  doi: 10.1021/ja054872i

    11. [11]

      Rosen, B. R.; Simke, L. R.; Thuy-Boun, P. S.; Dixon, D. D.; Yu, J.-Q.; Baran, P. S. Angew. Chem. Int. Ed. 2013, 52, 7317.  doi: 10.1002/anie.201303838

    12. [12]

      For reviews on the field of photochemical reactions as key steps in natural product synthesis, see:(a) Bach, T.; Hehn. J. P. Angew. Chem. Int. Ed. 2011, 50, 1000.(b) Hoffmann. N. Chem. Rev. 2008, 108, 1052.(c) Iriondo-Alberdi, J.; Greaney, M. F. Eur. J. Org. Chem. 2007, 4801.

    13. [13]

      For recently selected examples on the field of applications of DDQ as aromatization reagent in natural product synthesis, see:(a) Li, H.; Chen, Q.; Lu, Z.; Li, A. J. Am. Chem. Soc. 2016, 138, 15555.(b) Yang, P.; Yao, M.; Li, J.; Li, Y.; Li, A. Angew. Chem. Int. Ed. 2016, 55, 6964.(c) Zhou, S.; Chen, H.; Luo, Y.; Zhang, W.; Li, A. Angew. Chem. Int. Ed. 2015, 54, 6878.

  • 加载中
    1. [1]

      Jie Li Huida Qian Deyang Pan Wenjing Wang Daliang Zhu Zhongxue Fang . Efficient Synthesis of Anethaldehyde Induced by Visible Light. University Chemistry, 2024, 39(4): 343-350. doi: 10.3866/PKU.DXHX202310076

    2. [2]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    3. [3]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    4. [4]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    5. [5]

      Aidang Lu Yunting Liu Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029

    6. [6]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    7. [7]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    8. [8]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    9. [9]

      Tao Cao Fang Fang Nianguang Li Yinan Zhang Qichen Zhan . Green Synthesis of p-Hydroxybenzonitrile Catalyzed by Spinach Extracts under Red-Light Irradiation: Research and Exploration of Innovative Experiments for Pharmacy Undergraduates. University Chemistry, 2024, 39(5): 63-69. doi: 10.3866/PKU.DXHX202309098

    10. [10]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    11. [11]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    12. [12]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    13. [13]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    14. [14]

      Yihao Zhao Jitian Rao Jie Han . Synthesis and Photochromic Properties of 3,3-Diphenyl-3H-Naphthopyran: Design and Teaching Practice of a Comprehensive Organic Experiment. University Chemistry, 2024, 39(10): 149-155. doi: 10.3866/PKU.DXHX202402050

    15. [15]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    16. [16]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    17. [17]

      Tianlong Zhang Jiajun Zhou Hongsheng Tang Xiaohui Ning Yan Li Hua Li . Virtual Simulation Experiment for Laser-Induced Breakdown Spectroscopy (LIBS) Analysis. University Chemistry, 2024, 39(6): 295-302. doi: 10.3866/PKU.DXHX202312049

    18. [18]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    19. [19]

      Jinfeng Chu Lan Jin Yu-Fei Song . Exploration and Practice of Flipped Classroom in Inorganic Chemistry Experiment: a Case Study on the Preparation of Inorganic Crystalline Compounds. University Chemistry, 2024, 39(2): 248-254. doi: 10.3866/PKU.DXHX202308016

    20. [20]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

Metrics
  • PDF Downloads(26)
  • Abstract views(1277)
  • HTML views(252)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return