Citation: Wang Bin, Wang Jianfu, Zhang Xiaofei, Chen Wenjie, Zhang Yongfan, Huang Xin. Theoretical Investigations on the Structures and the Chemical Bonding of NbMoSn-/0 (n=3~7) Clusters[J]. Acta Chimica Sinica, ;2017, 75(3): 307-320. doi: 10.6023/A16110578 shu

Theoretical Investigations on the Structures and the Chemical Bonding of NbMoSn-/0 (n=3~7) Clusters

  • Corresponding author: Wang Bin, wangbin_100@fzu.edu.cn
  • Received Date: 1 November 2016

    Fund Project: the National Natural Science Foundation of China 21371034the National Natural Science Foundation of China 21603117the Natural Science Foundation of Fuzhou University 2012-XY-6the National Natural Science Foundation of China 21373048the National Natural Science Foundation of China 21301030

Figures(15)

  • Recently, transition metal sulfides (TMS) have played an important role in many catalytic reactions. In particular, they are widely used in the petrochemical industry, such as the hydrodesulfurization (HDS) and the hydrodenitrogenation (HDN) processes. In this work, density functional theory (DFT) and coupled cluster theory[CCSD (T)] calculations were used to study the niobium-mixed di-nuclear molybdenum sulfide clusters NbMoSn-/0(n=3~7). In our calculations, their ground-state structures were determined and the effects of doping metal, adjusting the sulfur content (n) and changing the charge states of clusters were discussed on the geometries, electronic structures and chemical bonding of NbMoSn-/0(n=3~7). NbMoSn-/0(n=3~7) clusters can be viewed as linking different sulfur ligands to the NbMoS2 four-membered rings. Among them, diverse poly-sulfur ligands, such as bridging S2, terminal S2 and terminal S3 groups, emerged in the sulfur-rich clusters. Generalized Koopmans' Theorem was employed to predict the vertical detachment energies (VDEs), and simulate the corresponding anionic photoelectron spectra (PES). The first VDEs (VDE1st) of NbMoSn-(n=3~6) increased gradually as a function of n, and then decreased suddenly when the sulfur content (n) reached 7. The VDE1st reached the maximum by 4.69 eV when the sulfur content equaled to 6. The driving forces (-ΔG) of the reduction reactions between NbMoSn-/0(n=3~7) and H2 were evaluated. The NbMoS7- anion with the terminal S22- group yielded the negative value of ΔG, which indicated that the reaction is thermodynamically favored even at the room temperature. We predicted that doping niobium into the molybdenum sulfides may improve the emergence of S2 group which may be helpful in producing the coordinatively unsaturated sites (CUS) under the H2/H2S atmosphere. Molecular orbital analyses are performed to improve our understanding on the structural evolution and the chemical bonding of NbMoSn-/0(n=3~7) clusters.
  • 加载中
    1. [1]

      Shi, J. P.; Ma, D. L.; Zhang, Y. F.; Liu, Z. F. Acta Chim. Sinica 2015, 73, 877.  doi: 10.6023/A15030157
       

    2. [2]

      Transition Metal Sulfur Chemistry:Biological and Industrial Significance, Eds.:Stiefel, E. I.; Matsumoto, K., American Chemical Society, Washington, 1996.

    3. [3]

      Lee, S. C.; Li, J.; Mitchell, J. C.; Holm, R. H. Inorg. Chem. 1992, 31, 4333.  doi: 10.1021/ic00047a021

    4. [4]

      Nasretdinova, V.; Zaitsev-Zotov, S. Physica B 2012, 407, 1874.  doi: 10.1016/j.physb.2012.01.052

    5. [5]

      Wang, Q.; Zhao, J.; Wang, X. F. J. Phys. Chem. A 2015, 119, 2244.  doi: 10.1021/jp5054106

    6. [6]

      Pettarin, V.; Churruca, M. J.; Felhos, D.; Karger-Kocsis, J.; Frontini, P. M. Wear 2010, 269, 31.  doi: 10.1016/j.wear.2010.03.006

    7. [7]

      Basharina, K. Y.; Terekhin, D. V.; Kuz'mina, G. N.; Bordubanova, A. E.; Ezhov, G. A.; Parenago, O. P. Petrol. Chem. 2009, 49, 339.  doi: 10.1134/S0965544109040148

    8. [8]

      Chhowalla, M.; Amaratunga, G. A. J. Nature (London) 2000, 407, 164.  doi: 10.1038/35025020

    9. [9]

      Ye, L. N.; Wu, C. Z.; Guo, W.; Xie, Y. Chem. Commun. 2006, 45, 4738.

    10. [10]

      Walter, M. G.; Warren, E. L.; McKone, J. R.; Boettcher, S. W.; Mi, Q.; Santori, E. A.; Lewis, N. S. Chem. Rev. 2010, 110, 6446.  doi: 10.1021/cr1002326

    11. [11]

      Jaramillo, T. F.; Jørgensen, K. P.; Bonde, J.; Nielsen, J. H.; Horch, S.; Chorkendorff, I. Science 2007, 317, 100.  doi: 10.1126/science.1141483

    12. [12]

      Tian, Y.; He, Y.; Shang, J.; Zhu, Y. F. Acta Chim. Sinica 2004, 62, 1807.
       

    13. [13]

      Xing, L.; Jiao, L. Y. Acta Phys.-Chim. Sin. 2016, 32, 2133.

    14. [14]

      Raybaud, P.; Hafner, J.; Kresse, G.; Kasztelan, S.; Toulhoat, H. J. Catal. 2000, 189, 129.  doi: 10.1006/jcat.1999.2698

    15. [15]

      Toulhoat, H.; Raybaud, P.; Kasztelan, S.; Kresse, G.; Hafner, J. Catal. Today 1999, 50, 629.  doi: 10.1016/S0920-5861(98)00497-0

    16. [16]

      Jaramillo, T. F. Nature Chem. 2014, 6, 248.  doi: 10.1038/nchem.1853

    17. [17]

      Jaramillo, T. F.; Jørgensen, K. P.; Bonde, J.; Nielsen, J. H.; Horch, S.; Chorkendorff, I. Science 2007, 317, 100.  doi: 10.1126/science.1141483

    18. [18]

      Guo, X.; Tong, X.; Wang, Y.; Chen, C.; Jin, G.; Guo, X. Y. J. Mater. Chem. A 2013, 1, 4657.  doi: 10.1039/c3ta10600d

    19. [19]

      Liao, L.; Zhu, J.; Bian, X.; Zhu, L.; Scanlon, M. D.; Girault, H. H.; Liu, B. Adv. Funct. Mater. 2013, 23, 5326.  doi: 10.1002/adfm.v23.42

    20. [20]

      Kockerling, M.; Johrendt, D.; Finckh, E. W. J. Am. Chem. Soc. 1998, 120, 12297.  doi: 10.1021/ja982081t

    21. [21]

      Hernandez-Molina, R.; Gili, P.; Sokolov, M. N.; Safont, V. S. Inorg. Chim. Acta 2011, 376, 10.  doi: 10.1016/j.ica.2011.05.023

    22. [22]

      Liao, Y. H.; Park, K. S.; Singh, P.; Li, W.; Goodenough, J. B. J. Power Sources 2014, 245, 27.  doi: 10.1016/j.jpowsour.2013.06.048

    23. [23]

      Divigalpitiya, W. M. R.; Frindt, R. F.; Morrison, S. R. J. Phys. D:Appl. Phys. 1990, 23, 966.  doi: 10.1088/0022-3727/23/7/035

    24. [24]

      Oviedo-Roa, R.; Martinez-Magadan, J. M.; Illas, F. J. Phys. Chem. B 2006, 110, 7951.  doi: 10.1021/jp052299j

    25. [25]

      Lewis, D. A.; Kenney, C. N. Trans. Inst. Chem. Eng. 1981, 59, 186.

    26. [26]

      Aray, Y.; Zambrano, D.; Cornejo, M. H.; Ludeña, E. V.; Iza, P.; Vidal, A. B.; Coll, D. S.; Jimenez, D. M.; Henriquez, F.; Paredes, C. J. Phys. Chem. C 2014, 118, 27823.  doi: 10.1021/jp5059269

    27. [27]

      Allali, N.; Marie, A. M.; Danot, M.; Geantet, C.; Breysse, M. J. Catal. 1995, 156, 279.  doi: 10.1006/jcat.1995.1255

    28. [28]

      Geantet, C.; Afonso, J.; Breysse, M.; Danot, M. Catal. Today 1996, 28, 23.  doi: 10.1016/0920-5861(95)00215-4

    29. [29]

      Allali, N.; Prouzet, E.; Michalowicz, A.; Gaborit, V.; Nadiri, A.; Danot, M. Appl. Catal. A-GEN. 1997, 159, 333.  doi: 10.1016/S0926-860X(97)00069-0

    30. [30]

      Cattenot, M.; Portefaix, J. L.; Afonso, J.; Breysse, M.; Lacroix, M.; Perot, G. J. Catal. 1998, 173, 366.  doi: 10.1006/jcat.1997.1929

    31. [31]

      Danot, M.; Afonso, J.; Portefaix, J. L.; Breysse, M.; Courieres, T. D. Catal. Today 1991, 10, 629.  doi: 10.1016/0920-5861(91)80043-9

    32. [32]

      Afanasiev, P.; Bezverkhyy, I. Appl. Catal. A-GEN. 2007, 322, 129.  doi: 10.1016/j.apcata.2007.01.015

    33. [33]

      Gaborit, V.; Allali, N.; Geantet, C.; Breysse, M.; Vrinat, M.; Danotl, M. Catal. Today 2000, 57, 267.  doi: 10.1016/S0920-5861(99)00336-3

    34. [34]

      Chai, Y. M.; An, G. J.; Liu, Y. Q.; Liu, C. G. Prog. Chem. 2007, 19, 234.

    35. [35]

      Besenbacher, F.; Brorson, M.; Clausen, B. S.; Helveg, S.; Hinnemann, B.; Kibsgaard, J.; Lauritsen, J. V.; Moses, P. G.; Nørskovc, J. K.; Topsøe, H. Catal. Today 2008, 130, 86.  doi: 10.1016/j.cattod.2007.08.009

    36. [36]

      Drescher, T.; Niefind, F.; Bensch, W.; Grünert, W. J. Am. Chem. Soc. 2012, 134, 18896.  doi: 10.1021/ja3074903

    37. [37]

      Prodhomme, P. Y.; Raybaud, P.; Toulhoat, H. J. Catal. 2011, 280, 178.  doi: 10.1016/j.jcat.2011.03.017

    38. [38]

      Dinter, N.; Rusanen, M.; Raybaud, P.; Kasztelan, S.; Silva, P.; Toulhoat, H. J. Catal. 2010, 275, 117.  doi: 10.1016/j.jcat.2010.07.020

    39. [39]

      Lauritsen, J. V.; Nyberg, M.; Nørskov, J. K.; Clausen, B. S.; Topsøe, H.; Lægsgaard, E.; Besenbacher, F. J. Catal. 2004, 224, 94.  doi: 10.1016/j.jcat.2004.02.009

    40. [40]

      Wen, X. D.; Zeng, T.; Li, Y. W.; Wang, J.; Jiao, H. J. Phys. Chem. B 2005, 109, 18491.  doi: 10.1021/jp051540r

    41. [41]

      Lu, J. X. Chinese J. Struct. Chem. 1989, 5, 327.

    42. [42]

      Huang, R. B.; Zhang, P.; Zhu, Y. B.; Zheng, L. S. Acta Phys-Chim. Sin. 1991, 8, 8.
       

    43. [43]

      Popov, I.; Kunze, T.; Gemming, S.; Seifert, G. Eur. Phys. J. D. 2007, 45, 439.  doi: 10.1140/epjd/e2007-00170-1

    44. [44]

      Popov, I.; Gemming, S.; Seifert, G. Phys. Rev. B 2007, 75, 245436.  doi: 10.1103/PhysRevB.75.245436

    45. [45]

      Seifert, G.; Tamuliene, J.; Gemming, S. Comput. Mater. Sci. 2006, 35, 316.  doi: 10.1016/j.commatsci.2004.08.014

    46. [46]

      Gemming, S.; Seifert, G. Appl. Phys. A 2006, 82, 175.

    47. [47]

      Jiao, H. J.; Li, Y. W.; Delmon, B.; Halet, J. F. J. Am. Chem. Soc. 2001, 123, 7334.  doi: 10.1021/ja0034085

    48. [48]

      Bertram, N.; Kim, Y. D.; Ganteför, G.; Sun, Q.; Jena, P.; Tamliene, J.; Seifert, G. Chem. Phys. Lett. 2004, 396, 341.  doi: 10.1016/j.cplett.2004.08.057

    49. [49]

      Liang, B.; Andrews, L. J. Phys. Chem. A 2002, 106, 3738.  doi: 10.1021/jp013790n

    50. [50]

      Liang, B.; Andrews, L. J. Phys. Chem. A 2002, 106, 6945.  doi: 10.1021/jp025915+

    51. [51]

      Yu, S. W.; Yin, L. Q.; Yao, L. F.; Li, M.; Xie, X. G. Chin. Chem. Lett. 2008, 19, 1008.  doi: 10.1016/j.cclet.2008.05.029

    52. [52]

      Yin, S.; Xie, Y.; Bernstein, E. R. J. Phys. Chem. A 2011, 115, 10266.  doi: 10.1021/jp2056267

    53. [53]

      Saha, A.; Raghavachari, K. J. Chem. Phys. 2013, 139, 204301.  doi: 10.1063/1.4830096

    54. [54]

      Saha, A.; Raghavachari, K. J. Chem. Phys. 2014, 141, 074305.  doi: 10.1063/1.4892671

    55. [55]

      Afanasiev, P.; Fischer, L.; Beauchesne, F.; Danot, M.; Gaborit, V.; Breysse, M. Catal. Lett. 2000, 64, 59.  doi: 10.1023/A:1019058113931

    56. [56]

      Gaborit, V.; Allali, N.; Danot, M.; Geantet, C.; Cattenot, M.; Breysse, M.; Diehl, F. Catal. Today 2003, 78, 499.  doi: 10.1016/S0920-5861(02)00336-X

    57. [57]

      Aray, Y.; Zambrano, D.; Cornejo, M. H.; Ludeña, E. V.; Iza, P.; Vidal, A. B.; Coll, D. S.; Jimenez, D. M.; Henriquez, F.; Paredes, C. J. Phys. Chem. C 2014, 118, 27823.  doi: 10.1021/jp5059269

    58. [58]

      Ivanovskaya, V. V.; Heine, T.; Gemming, S.; Seifert, G. Phys. Status. Solidi. 2006, 243, 1757.  doi: 10.1002/(ISSN)1521-3951

    59. [59]

      Ivanovskaya, V. V.; Zobelli, A.; Gloter, A.; Brun, N.; Serin, V.; Colliex, C. Phys. Rev. B:Condens. Matter 2008, 78, 134104.  doi: 10.1103/PhysRevB.78.134104

    60. [60]

      Deepak, F. L.; Cohen, H.; Cohen, S.; Feldman, Y.; Popovitz-Biro, R.; Azulay, D.; Millo, O.; Tenne, R. J. Am. Chem. Soc. 2007, 129, 12549.  doi: 10.1021/ja074081b

    61. [61]

      Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A., Gaussian 03, Revision D. 01, Gaussian, Inc.:Wallingford, CT, 2004.

    62. [62]

      Becke, A. D. J. Chem. Phys. 1993, 98, 1372.  doi: 10.1063/1.464304

    63. [63]

      Lee, C.; Yang, W. T.; Parr, R. G. Phys. Rev. B 1988, 37, 785.  doi: 10.1103/PhysRevB.37.785

    64. [64]

      Stephens, P. J.; Devlin, F. J.; Chabalowski, C. F.; Frisch, M. J. Phys. Chem. 1994, 98, 11623.  doi: 10.1021/j100096a001

    65. [65]

      Schafer, A.; Huber, C.; Ahlrichs, R. J. Chem. Phys. 1994, 100, 5829.  doi: 10.1063/1.467146

    66. [66]

      Weigend, F.; Ahlrichs, R. Phys. Chem. Chem. Phys. 2005, 7, 3297.  doi: 10.1039/b508541a

    67. [67]

      Eichkorn, K.; Weigend, F.; Treutler, O.; Ahlrichs, R. Theor. Chem. Acc. 1997, 97, 119. The exponents (included those of the polarization functions) and contraction coefficients can be retrieved from the following web-site:https://bse.pnl.gov/bse/portal.

    68. [68]

      Andrae, D.; Häußermann, U.; Dolg, M.; Stoll, H.; Preuß, H. Theor. Chim. Acta 1990, 77, 123.  doi: 10.1007/BF01114537

    69. [69]

      Kuchle, W.; Dolg, M.; Stoll, H.; Preuss, H. Pseudopotentials of the Stuttgart/Dresden Group 1998, revision August 11, 1998; < http://www.theochem.uni-stuttgart.de/pseudopotentiale > .

    70. [70]

      Dunning, T. H. Jr. J. Chem. Phys. 1989, 90, 1007.  doi: 10.1063/1.456153

    71. [71]

      Martin, J. M. L.; Sundermann, A. J. Chem. Phys. 2001, 114, 3408.  doi: 10.1063/1.1337864

    72. [72]

      Woon, D. E.; Dunning, T. H. Jr. J. Chem. Phys. 1993, 98, 1358.  doi: 10.1063/1.464303

    73. [73]

      Dunning, T. H. Jr.; Peterson, K. A.; Wilson, A. K. J. Chem. Phys. 2001, 114, 9244.  doi: 10.1063/1.1367373

    74. [74]

      Purvis, G. D.; Bartlett, R. J. J. Chem. Phys. 1982, 76, 1910.  doi: 10.1063/1.443164

    75. [75]

      Scuseria, G. E.; Janssen, C. L.; Schaefer Ⅲ, H. F. J. Chem. Phys. 1988, 89, 7382.  doi: 10.1063/1.455269

    76. [76]

      Raghavachari, K.; Trucks, G. W.; Pople, J. A.; Head-Gordon, M. Chem. Phys. Lett. 1989, 157, 479.  doi: 10.1016/S0009-2614(89)87395-6

    77. [77]

      Watts, J. D.; Gauss, J.; Bartlett, R. J. J. Chem. Phys. 1993, 98, 8718.  doi: 10.1063/1.464480

    78. [78]

      Bartlett, R. J.; Musial, M. Rev. Mod. Phys. 2007, 79, 291.  doi: 10.1103/RevModPhys.79.291

    79. [79]

      Werner, H. J.; Knowles, P. J.; Knizia, G.; Manby, F. R.; Schütz, M.; Celani, P.; Györffy, W.; Kats, D.; Korona, T.; Lindh, R.; Mitrushenkov, A.; Rauhut, G.; Shamasundar, K. R.; Adler, T. B.; Amos, R. D.; Bernhardsson, A.; Berning, A.; Cooper, D. L.; Deegan, M. J. O.; Dobbyn, A. J.; Eckert, F.; Goll, E.; Hampel, C.; Hesselmann, A.; Hetzer, G.; Hrenar, T.; Jansen, G.; Köppl, C.; Liu, Y.; Lloyd, A. W.; Mata, R. A.; May, A. J.; McNicholas, S. J.; Meyer, W.; Mura, M. E.; Nicklaß, A.; O'Neill, D. P.; Palmieri, P.; Peng, D.; Pflüger, K.; Pitzer, R.; Reiher, M.; Shiozaki, T.; Stoll, H.; Stone, A. J.; Tarroni, R.; Thorsteinsson, T.; Wang, M., MOLPRO, Version 2010. 1, a package of ab initio programs, < http://www.molpro.net > .

    80. [80]

      Dennington, R. Ⅱ; Keith, T.; Millam, J. GaussView, Version 4. 1. 2., Semichem Inc., Shawnee Mission, 2007.

    81. [81]

      Tozer, D. J.; Handy, N. C. J. Chem. Phys. 1998, 109, 10180.  doi: 10.1063/1.477711

    82. [82]

      Zhang, S.; Luo, C. G.; Li, H. Y.; Lu, C.; Li, G. Q.; Lu, Z. W. Mater. Chem. Phys. 2015, 160, 227.  doi: 10.1016/j.matchemphys.2015.04.028

    83. [83]

      Zhang, S.; Zhang, Y.; Lu, Z.; Shen, X.; Li, G.; Peng, F.; Bu, X. J. Mater. Sci. 2016, 51, 9440.  doi: 10.1007/s10853-016-0189-9

    84. [84]

      Merki, D.; Fierro, S.; Vrubel, H.; Hu, X. Chem. Sci. 2011, 2, 1262.  doi: 10.1039/C1SC00117E

    85. [85]

      Duchet, J. C.; Van-Oers, E. M.; De-Beer, V. H. J.; Prins, R. J. Catal. 1983, 80, 386.  doi: 10.1016/0021-9517(83)90263-4

    86. [86]

      Afanasiev, P.; Jobic, H.; Lorentz, C.; Leverd, P.; Mastubayashi, N.; Piccolo, L.; Vrinat, M. J. Phys. Chem. C 2009, 113, 4139.  doi: 10.1021/jp809300y

    87. [87]

      Afanasiev, P. J. Catal. 2010, 269, 269.  doi: 10.1016/j.jcat.2009.11.004

    88. [88]

      Allali, N.; Leblanc, A.; Danot, M.; Geantet, C.; Vrinat, M.; Breysse, M. Catal. Today 1996, 27, 137.  doi: 10.1016/0920-5861(95)00181-6

    89. [89]

      Christe, K. O.; Dixon, D. A.; Mclemore, D.; Wilson, W. W.; Sheehy, J. A.; Boatz, J. A. J. Fluorine Chem. 1999, 101, 151.

    90. [90]

      Li, S.; Dixon, D. A. J. Phys. Chem. A 2006, 110, 6231.  doi: 10.1021/jp060735b

  • 加载中
    1. [1]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    2. [2]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    3. [3]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    4. [4]

      Fei Xie Chengcheng Yuan Haiyan Tan Alireza Z. Moshfegh Bicheng Zhu Jiaguo Yud带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013

    5. [5]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    6. [6]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    7. [7]

      Zitong Chen Zipei Su Jiangfeng Qian . Aromatic Alkali Metal Reagents: Structures, Properties and Applications. University Chemistry, 2024, 39(8): 149-162. doi: 10.3866/PKU.DXHX202311054

    8. [8]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    9. [9]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    10. [10]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    11. [11]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    12. [12]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    13. [13]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    14. [14]

      Donghui PANYuping XUXinyu WANGLizhen WANGJunjie YANDongjian SHIMin YANGMingqing CHEN . Preparation and in vivo tracing of 68Ga-labeled PM2.5 mimetic particles for positron emission tomography imaging. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 669-676. doi: 10.11862/CJIC.20230468

    15. [15]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    16. [16]

      Yan Liu Yuexiang Zhu Luhua Lai . Introduction to Blended and Small-Class Teaching in Structural Chemistry: Exploring the Structure and Properties of Crystals. University Chemistry, 2024, 39(3): 1-4. doi: 10.3866/PKU.DXHX202306084

    17. [17]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    18. [18]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    19. [19]

      Hongyao Li Youyan Liu Luwei Dai Min Yang Qihui Wang . The Blessing of Indium Sulfide:Confronting the Narrow Path with Uric Acid. University Chemistry, 2024, 39(5): 325-335. doi: 10.3866/PKU.DXHX202311104

    20. [20]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

Metrics
  • PDF Downloads(3)
  • Abstract views(1121)
  • HTML views(133)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return