Citation: Yang Xiangping, Guo Xiaoxue, Zhang Chenghua, Wang Xiaoping, Yang Yong, Li Yongwang. Synthesis and Catalytic Properties of Iron Based Fischer-Tropsch Catalyst Mediated by MOFs Fe-MIL-100[J]. Acta Chimica Sinica, ;2017, 75(4): 360-366. doi: 10.6023/A16100549 shu

Synthesis and Catalytic Properties of Iron Based Fischer-Tropsch Catalyst Mediated by MOFs Fe-MIL-100

  • Corresponding author: Li Yongwang, zhangchh@sxicc.ac.cn
  • Received Date: 15 October 2016

    Fund Project: the National Natural Science Foundation of China 91545109International Cooperation in Science and Technology of Shanxi Province 2014081004

Figures(8)

  • Depletion of crude oil resources and environmental concerns have spurred worldwide interest in finding un-oil route for liquid fuels. Fischer-Tropsch synthesis is an effective progress for a wide spectrum of hydrocarbon chains from synthesis gas. The use of iron-based catalysts would be preferred in the industry. Here we present a strategy to produce highly dispersed active component embedded in a matrix of porous carbon. Through the carbonization of iron-containing metal-organic frameworks (Fe-MIL-100) at different temperature in N2, four kinds of Fe@C catalysts were prepared. Glucose was used as additional carbon precursor for the synthesis catalyst samples to prevent particle agglomeration. Our strategy avoids the particle agglomeration in the weak metal-support interaction Fe@C catalysts during calcination, reduction and reaction. The structure and morphology of prepared catalysts were characterized by X-ray diffraction (XRD), N2 physical adsorption, transmission electron microscopy (TEM), inductively coupled plasma-atomic emission spectrometer (ICP-AES). It is demonstrated that the iron loading, the particle size, and the Fe phase structure of Fe@C catalysts can be controlled by changing the carbonization temperature of Fe-MIL-100. With increasing the temperature, the iron loading and the particle size increase gradually. Depending on the carbonization temperature, the Fe3O4 phase is dominant at 400 and 500℃. The FeO and Fe phase appear at 600℃. The Fe3C phase prevails at 700℃. The high dispersion of the metal phase and its encapsulation in a highly porous carbon matrix result in an unrivalled FTS activity. The spatial restriction created by encapsulation seems to minimize sintering and oxidation of the active Hägg carbide phase. When the reaction conditions were set at 260℃, 3 MPa, the space velocity of 8000 h-1, the conversion of CO is up to 68%. The Fe time yield (FTY) of the Fe@C-500 catalyst were as high as 164 μmolCO·gFe-1·s-1, which surpasses that of most F-T catalysts reported in the literature in middle-temperature Fischer-Tropsch synthesis.
  • 加载中
    1. [1]

      Yang, W. S.; Fang, D. Y.; Xiang, H. W.; Li, Y. W. Acta Chim. Sinica 2005, 63, 157.  doi: 10.3321/j.issn:0567-7351.2005.02.012
       

    2. [2]

      Gao, L.; Xu, Y.; Hou, B.; Wu, D.; Sun, Y. H. Acta Chim. Sinica 2008, 66, 1851.  doi: 10.3321/j.issn:0567-7351.2008.16.001
       

    3. [3]

      Zhang, J.; Zhang, Z.-P.; Su, J.-J.; Fu, D.-L.; Dai, W.-W.; Liu, D.; Xu, J.; Han, Y.-F. CIESC J. 2016, 67, 550.

    4. [4]

      Suo, H.-Y.; Wang, S.-G.; Zhang, C.-H.; Xu, J.; Wu, B.-S.; Yang, Y.; Xiang, H.-W.; Li, Y.-W. J. Catal. 2012, 286, 111.  doi: 10.1016/j.jcat.2011.10.024

    5. [5]

      Krylova, A. Y.; Panin, A. A.; Lyadov, A. S.; Sagitov, S. A.; Kurkon, V. I.; Kryazhev, Y. G. Petrol. Chem. 2011, 51, 317.  doi: 10.1134/S0965544111050094

    6. [6]

      Abbaslou, R. M. M.; Tavasoli, A.; Dalai, A. K. Appl. Catal. A-General 2009, 355, 33.  doi: 10.1016/j.apcata.2008.11.023

    7. [7]

      Lv, J.-Z.; Hu, R.-Z.; Zhuo, O.; Xu, B.-L.; Yang, L.-J.; Wu, Q.; Wang, X.-Z.; Fan, Y.-N.; Hu, Z. Acta Chim. Sinica 2014, 72, 1017.  doi: 10.3866/PKU.WHXB201401251
       

    8. [8]

      deKrafft, K. E.; Wang, C.; Lin, W. Adv. Mater. 2014, 24, 2014.

    9. [9]

      Gascon, J.; Corma, A.; Kapteijn, F.; Llabrés, I.; Xamena, F. X. ACS Catal. 2014, 4, 361.  doi: 10.1021/cs400959k

    10. [10]

      Masoomi, M. Y.; Morsali, A. Coord. Chem. Rev. 2012, 256, 2921.  doi: 10.1016/j.ccr.2012.05.032

    11. [11]

      Wang, C.; Xie, Z.-G.; Kathryn, E. J. Am. Chem. Soc. 2011, 133, 13445.  doi: 10.1021/ja203564w

    12. [12]

      Liu, B.; Shioyama, H.; Jiang, H.; Zhang, X.; Xu, Q. Carbon 2010, 48, 456.  doi: 10.1016/j.carbon.2009.09.061

    13. [13]

      Santos, V. P.; Wezendonk, T. A.; Jaén, J. J. D.; Dugulan, A. L.; Nasalevich, M. A.; Islam, H.-U.; Chojecki, A.; Sartipi, S.; Sun, X. H.; Hakeem. A. A.; Koeken, A. C. J.; Ruitenbeek, M.; Davidian, T.; Meima, G. R.; Sankar, G.; Kapeijn, F.; Makkee, M.; Gascon, J. Nat. Commun. 2015, 6, 6451.  doi: 10.1038/ncomms7451

    14. [14]

      Horcajada, P.; Surblé, S.; Serre, C.; Hong, D.-Y.; Seo, Y.-K.; Chang, J.-C.; Grenéche, J.-M.; Margiolaki, I.; Frey, G. ChemComm 2007, 27, 2820.

    15. [15]

      Fang, C. M.; Sluiter, M. H. F.; Huis, M. A.; Ande, C. K.; Zandbergen, H. W. Phys. Rev. Lett. 2010, 105, 055503.  doi: 10.1103/PhysRevLett.105.055503

    16. [16]

      Merkle, R.; Maier, J. Z. Anorg. Allg. Chem. 2005, 631, 1163.  doi: 10.1002/(ISSN)1521-3749

    17. [17]

      Qiu, C. W.; Wu, B. S.; Meng, S. C.; Li, Y. W. Acta Chim. Sinica 2015, 73, 690.
       

    18. [18]

      Park, J. Y.; Lee, Y. J.; Khanna, P. K.; Jun, K. W.; Bae, J. W.; Kim, Y. H. J. Mol. Catal. A 2010, 323, 84.  doi: 10.1016/j.molcata.2010.03.025

    19. [19]

      Yang, C.; Zhao, H.; Hou, Y.; Ma, D. J. Am. Chem. Soc. 2012, 134, 15814.  doi: 10.1021/ja305048p

    20. [20]

      Zhang, Q.; Kang, J.; Wang, Y. ChemCatChem 2010, 2, 1030.  doi: 10.1002/cctc.201000071

    21. [21]

      Wezendonk, T. A.; Santos, V. P.; Nasalevich, M. A.; Warringa, Q. S. E.; Dugulan, A. L.; Chojecki, A.; Koeken, C. J.; Ruitenbeek, M.; Meima, G.; Islam, H.-U.; Sankar, G.; Makkee, M.; Kapteijn, F.; Gascon, H.-U. ACS Catal. 2016, 6, 3236.  doi: 10.1021/acscatal.6b00426

    22. [22]

      Yu, G.; Sun, B.; Pei, Y.; Xie, S.; Yan, S.; Qiao, M.; Fan, K.; Zhang, X.; Zong, B. J. J. Am. Chem. Soc. 2010, 132, 935.  doi: 10.1021/ja906370b

  • 加载中
    1. [1]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    2. [2]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    3. [3]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    4. [4]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    5. [5]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    6. [6]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    7. [7]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    8. [8]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    9. [9]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    10. [10]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    11. [11]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    12. [12]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    13. [13]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    14. [14]

      Yujia LITianyu WANGFuxue WANGChongchen WANG . Direct Z-scheme MIL-100(Fe)/BiOBr heterojunctions: Construction and photo-Fenton degradation for sulfamethoxazole. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 481-495. doi: 10.11862/CJIC.20230314

    15. [15]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    16. [16]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    17. [17]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    18. [18]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    19. [19]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    20. [20]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

Metrics
  • PDF Downloads(11)
  • Abstract views(1673)
  • HTML views(426)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return