Citation: Huang Lu, Li Zhichun, Huang Shouqiang, Peter Reiss, Li Liang. Synthesis of InPZnS/ZnS Quantum Dots by Continuous Injection of Phosphorus Precursor[J]. Acta Chimica Sinica, ;2017, 75(3): 300-306. doi: 10.6023/A16100543 shu

Synthesis of InPZnS/ZnS Quantum Dots by Continuous Injection of Phosphorus Precursor

  • Corresponding author: Li Liang, liangli117@sjtu.edu.cn
  • Received Date: 13 October 2016

    Fund Project: the National Natural Science Foundation of China 21607101the National Natural Science Foundation of China B21271179

Figures(9)

  • InP quantum dots (QDs) are regarded as the most desirable candidate to replace the role of CdSe QDs in the applications of bio-labeling, LEDs, solar cells, etc, because InP is more environmentally friendly compared to Cd based QDs, and could also offer a tunable emission from blue to near-infrared. Nevertheless, the studies and applications of InP QDs are rather sparse in comparison with CdSe QDs, which are principally caused by significant difficulties in its synthesis. In this report, we developed a novel method for the synthesis of InPZnS/ZnS QDs by using zinc phosphide as phosphorus precursor, and the zinc and sulfur precursors were also added at the start of reaction, which allows the continuous injection of phosphine gas into the reaction, resulting in high quality InPZnS/ZnS quantum dots with emission up to 680 nm. The core synthesis and shell coating were separated by controlling the reaction temperature. During the first 30 minutes, the temperature of reaction solution was kept at 250℃ to grow the InPZnS core QDs. Then, the coating of ZnS shell was happened and kept about 1 hour to guarantee the complete decomposition of 1-dodecanethiol (DDT) after the reaction temperature was increased to 300℃. The biggest advantage of this synthetic method is the tunable emission region from blue to near-infrared. The effects of reaction parameters were systematically investigated. We observed that the molar ratio of In:myristic acid (MA) and that of In:Zn (S) had significant influences on the size of the InP QDs. The structure of InPZnS/ZnS QDs was confirmed by transmission electron microscope (TEM), X-ray powder diffraction (XRD), and energy dispersive X-ray analyzer (EDX). TEM characterization indicated the final core/shell InPZnS/ZnS QDs were good monodispersity with an average size of 7 nm. Furthermore, we investigated the versatility of this method by using other phosphorus precursor. The injection pump leaded to a continuous supply of phosphorus precursor on a timescale and reacted with indium precursor to form InP QDs. The final sample showed an emission at 710 nm. The present method gives access to larger sized InP QDs, making it prosperous for applications in biological labeling.
  • 加载中
    1. [1]

      Bera, D.; Qian, L.; Tseng, T. K.; Holloway, P. H. Materials 2010, 3, 2260.  doi: 10.3390/ma3042260

    2. [2]

      Bourzac, K. Nature 2013, 493, 283.  doi: 10.1038/493283a

    3. [3]

      Zhang, Y.; Xie, C.; Su, H. P.; Liu, J.; Pickering, S.; Wang, Y. Q.; Yu, W. W.; Wang, J. K.; Wang, Y. D.; Hahm, J.; Dellas, N.; Mohney, S. E.; Xu, J. Nano Lett. 2011, 11, 329.  doi: 10.1021/nl1021442

    4. [4]

      Michalet, X.; Pinaud, F. F.; Bentolila, L. A.; Tsay, J. M.; Doose, S.; Li, J. J.; Sundaresan, G.; Wu, A. M.; Gambhir, S. S.; Weiss, S. Science 2005, 307, 538.  doi: 10.1126/science.1104274

    5. [5]

      Li, L.; Daou, J.; Texier, I.; Chi, T. T. K.; Liem, N. Q.; Reiss, P. Chem. Mater. 2009, 21, 2422.  doi: 10.1021/cm900103b

    6. [6]

      Chen, F. Q.; Gerion, D. Nano Lett. 2004, 4, 1827.  doi: 10.1021/nl049170q

    7. [7]

      Xie, R. G.; Battaglia, D.; Peng, X. G. J. Am. Chem. Soc. 2007, 129, 15432.  doi: 10.1021/ja076363h

    8. [8]

      Tamang, S.; Lincheneau, C.; Hermans, Y.; Jeong, S.; Reiss, P. Chem. Mater. 2016, 28, 2491.  doi: 10.1021/acs.chemmater.5b05044

    9. [9]

      Adam, S.; Talapin, D.; Borchert, H.; Lobo, A.; McGinley, C.; De Castro, A.; Hasse, M.; Weller, H.; Möller, T. J. Chem. Phys. 2005, 123, 084706.  doi: 10.1063/1.2004901

    10. [10]

      Lovingood, D. D.; Strouse, G. F. Nano Lett. 2008, 8, 3394.  doi: 10.1021/nl802075j

    11. [11]

      Li, Q.; Zhang, T.; Gu, H. W.; Ding, F. Z.; Qu, F.; Peng, X. Y.; Wang, H. Y.; Wu, Z. P. Acta Chim. Sinica 2013, 71, 929.  doi: 10.6023/A13010052
       

    12. [12]

      Li, L.; Reiss, P. J. Am. Chem. Soc. 2008, 130, 11588.  doi: 10.1021/ja803687e

    13. [13]

      Kim, T. H.; Kim, S. W.; Kang, M. J.; Kim, S. W. J. Phys. Chem. Lett. 2012, 3, 214.  doi: 10.1021/jz201605d

    14. [14]

      Altıntas, Y.; Talpur, M. Y.; Ünlu, M.; Mutlugün, E. J. Phys. Chem. C 2016, 120, 7885.  doi: 10.1021/acs.jpcc.6b01977

    15. [15]

      Li, L.; Protière, M.; Reiss, P. Chem. Mater. 2008, 20, 2621.  doi: 10.1021/cm7035579

    16. [16]

      Zan, F.; Ren, J. C. J. Mater. Chem. 2012, 22, 1794.  doi: 10.1039/C1JM13982G

    17. [17]

      Chen, M. H.; Pan, Z.; Yin, Y. F.; Liu, J.; Liu, M. Y.; Jia, Z. J.; Liang, G. J. Acta Chim. Sinica 2016, 74, 330.  doi: 10.6023/A15120785
       

    18. [18]

      Xu, S.; Ziegler, J.; Nann, T. J. Mater. Chem. 2008, 18, 2653.  doi: 10.1039/b803263g

  • 加载中
    1. [1]

      Miaomiao He Zhiqing Ge Qiang Zhou Jiaqing He Hong Gong Lingling Li Pingping Zhu Wei Shao . Exploring the Fascinating Realm of Quantum Dots. University Chemistry, 2024, 39(6): 231-237. doi: 10.3866/PKU.DXHX202310040

    2. [2]

      Jianjun Liu Xue Yang Chi Zhang Xueyu Zhao Zhiwei Zhang Yongmei Chen Qinghong Xu Shao Jin . Preparation and Fluorescence Characterization of CdTe Semiconductor Quantum Dots. University Chemistry, 2024, 39(7): 307-315. doi: 10.3866/PKU.DXHX202311031

    3. [3]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    4. [4]

      Asif Hassan Raza Shumail Farhan Zhixian Yu Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020

    5. [5]

      Fan Wu Wenchang Tian Jin Liu Qiuting Zhang YanHui Zhong Zian Lin . Core-Shell Structured Covalent Organic Framework-Coated Silica Microspheres as Mixed-Mode Stationary Phase for High Performance Liquid Chromatography. University Chemistry, 2024, 39(11): 319-326. doi: 10.12461/PKU.DXHX202403031

    6. [6]

      Laiying Zhang Yinghuan Wu Yazi Yu Yecheng Xu Haojie Zhang Weitai Wu . Innovation and Practice of Polymer Chemistry Experiment Teaching for Non-Polymer Major Students of Chemistry: Taking the Synthesis, Solution Property, Optical Performance and Application of Thermo-Sensitive Polymers as an Example. University Chemistry, 2024, 39(4): 213-220. doi: 10.3866/PKU.DXHX202310126

    7. [7]

      Dongju Zhang Rongxiu Zhu . Construction of Ideological and Political Education in Quantum Chemistry Course: Several Teaching Cases to Reveal the Universal Connection of Things. University Chemistry, 2024, 39(7): 272-277. doi: 10.3866/PKU.DXHX202311032

    8. [8]

      Peifeng Su Xin Lu . Development of Undergraduate Quantum Mechanics Module in Chemistry Department under the “Double First Class” Initiative. University Chemistry, 2024, 39(8): 99-103. doi: 10.3866/PKU.DXHX202401087

    9. [9]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    10. [10]

      Jia Zhou . Constructing Potential Energy Surface of Water Molecule by Quantum Chemistry and Machine Learning: Introduction to a Comprehensive Computational Chemistry Experiment. University Chemistry, 2024, 39(3): 351-358. doi: 10.3866/PKU.DXHX202309060

    11. [11]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    12. [12]

      Yuyang Xu Ruying Yang Yanzhe Zhang Yandong Liu Keyi Li Zehui Wei . Research Progress of Aflatoxins Removal by Modern Optical Methods. University Chemistry, 2024, 39(11): 174-181. doi: 10.12461/PKU.DXHX202402064

    13. [13]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    14. [14]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    15. [15]

      Hongwei Ma Hui Li . Three Methods for Structure Determination from Powder Diffraction Data. University Chemistry, 2024, 39(3): 94-102. doi: 10.3866/PKU.DXHX202310035

    16. [16]

      Qi Wang Yicong Gao Feng Lu Quli Fan . Preparation and Performance Characterization of the Second Near-Infrared Phototheranostic Probe: A New Design and Teaching Practice of Polymer Chemistry Comprehensive Experiment. University Chemistry, 2024, 39(11): 342-349. doi: 10.12461/PKU.DXHX202404141

    17. [17]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    18. [18]

      Yongwen Shen Wei Wang Qinghua Feng Jingfeng Lan Guangnong Lu Xiaolong Li Liu Yang Xiangyang Xu E Yu Li Wu Xinping Hui Yongmin Liang . Continuous Construction of National Demonstration Center for Experimental Education Based on Innovative Talent Training. University Chemistry, 2024, 39(7): 172-179. doi: 10.12461/PKU.DXHX202405083

    19. [19]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    20. [20]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

Metrics
  • PDF Downloads(31)
  • Abstract views(3965)
  • HTML views(849)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return