Citation: Huang Lu, Li Zhichun, Huang Shouqiang, Peter Reiss, Li Liang. Synthesis of InPZnS/ZnS Quantum Dots by Continuous Injection of Phosphorus Precursor[J]. Acta Chimica Sinica, ;2017, 75(3): 300-306. doi: 10.6023/A16100543 shu

Synthesis of InPZnS/ZnS Quantum Dots by Continuous Injection of Phosphorus Precursor

  • Corresponding author: Li Liang, liangli117@sjtu.edu.cn
  • Received Date: 13 October 2016

    Fund Project: the National Natural Science Foundation of China 21607101the National Natural Science Foundation of China B21271179

Figures(9)

  • InP quantum dots (QDs) are regarded as the most desirable candidate to replace the role of CdSe QDs in the applications of bio-labeling, LEDs, solar cells, etc, because InP is more environmentally friendly compared to Cd based QDs, and could also offer a tunable emission from blue to near-infrared. Nevertheless, the studies and applications of InP QDs are rather sparse in comparison with CdSe QDs, which are principally caused by significant difficulties in its synthesis. In this report, we developed a novel method for the synthesis of InPZnS/ZnS QDs by using zinc phosphide as phosphorus precursor, and the zinc and sulfur precursors were also added at the start of reaction, which allows the continuous injection of phosphine gas into the reaction, resulting in high quality InPZnS/ZnS quantum dots with emission up to 680 nm. The core synthesis and shell coating were separated by controlling the reaction temperature. During the first 30 minutes, the temperature of reaction solution was kept at 250℃ to grow the InPZnS core QDs. Then, the coating of ZnS shell was happened and kept about 1 hour to guarantee the complete decomposition of 1-dodecanethiol (DDT) after the reaction temperature was increased to 300℃. The biggest advantage of this synthetic method is the tunable emission region from blue to near-infrared. The effects of reaction parameters were systematically investigated. We observed that the molar ratio of In:myristic acid (MA) and that of In:Zn (S) had significant influences on the size of the InP QDs. The structure of InPZnS/ZnS QDs was confirmed by transmission electron microscope (TEM), X-ray powder diffraction (XRD), and energy dispersive X-ray analyzer (EDX). TEM characterization indicated the final core/shell InPZnS/ZnS QDs were good monodispersity with an average size of 7 nm. Furthermore, we investigated the versatility of this method by using other phosphorus precursor. The injection pump leaded to a continuous supply of phosphorus precursor on a timescale and reacted with indium precursor to form InP QDs. The final sample showed an emission at 710 nm. The present method gives access to larger sized InP QDs, making it prosperous for applications in biological labeling.
  • 加载中
    1. [1]

      Bera, D.; Qian, L.; Tseng, T. K.; Holloway, P. H. Materials 2010, 3, 2260.  doi: 10.3390/ma3042260

    2. [2]

      Bourzac, K. Nature 2013, 493, 283.  doi: 10.1038/493283a

    3. [3]

      Zhang, Y.; Xie, C.; Su, H. P.; Liu, J.; Pickering, S.; Wang, Y. Q.; Yu, W. W.; Wang, J. K.; Wang, Y. D.; Hahm, J.; Dellas, N.; Mohney, S. E.; Xu, J. Nano Lett. 2011, 11, 329.  doi: 10.1021/nl1021442

    4. [4]

      Michalet, X.; Pinaud, F. F.; Bentolila, L. A.; Tsay, J. M.; Doose, S.; Li, J. J.; Sundaresan, G.; Wu, A. M.; Gambhir, S. S.; Weiss, S. Science 2005, 307, 538.  doi: 10.1126/science.1104274

    5. [5]

      Li, L.; Daou, J.; Texier, I.; Chi, T. T. K.; Liem, N. Q.; Reiss, P. Chem. Mater. 2009, 21, 2422.  doi: 10.1021/cm900103b

    6. [6]

      Chen, F. Q.; Gerion, D. Nano Lett. 2004, 4, 1827.  doi: 10.1021/nl049170q

    7. [7]

      Xie, R. G.; Battaglia, D.; Peng, X. G. J. Am. Chem. Soc. 2007, 129, 15432.  doi: 10.1021/ja076363h

    8. [8]

      Tamang, S.; Lincheneau, C.; Hermans, Y.; Jeong, S.; Reiss, P. Chem. Mater. 2016, 28, 2491.  doi: 10.1021/acs.chemmater.5b05044

    9. [9]

      Adam, S.; Talapin, D.; Borchert, H.; Lobo, A.; McGinley, C.; De Castro, A.; Hasse, M.; Weller, H.; Möller, T. J. Chem. Phys. 2005, 123, 084706.  doi: 10.1063/1.2004901

    10. [10]

      Lovingood, D. D.; Strouse, G. F. Nano Lett. 2008, 8, 3394.  doi: 10.1021/nl802075j

    11. [11]

      Li, Q.; Zhang, T.; Gu, H. W.; Ding, F. Z.; Qu, F.; Peng, X. Y.; Wang, H. Y.; Wu, Z. P. Acta Chim. Sinica 2013, 71, 929.  doi: 10.6023/A13010052
       

    12. [12]

      Li, L.; Reiss, P. J. Am. Chem. Soc. 2008, 130, 11588.  doi: 10.1021/ja803687e

    13. [13]

      Kim, T. H.; Kim, S. W.; Kang, M. J.; Kim, S. W. J. Phys. Chem. Lett. 2012, 3, 214.  doi: 10.1021/jz201605d

    14. [14]

      Altıntas, Y.; Talpur, M. Y.; Ünlu, M.; Mutlugün, E. J. Phys. Chem. C 2016, 120, 7885.  doi: 10.1021/acs.jpcc.6b01977

    15. [15]

      Li, L.; Protière, M.; Reiss, P. Chem. Mater. 2008, 20, 2621.  doi: 10.1021/cm7035579

    16. [16]

      Zan, F.; Ren, J. C. J. Mater. Chem. 2012, 22, 1794.  doi: 10.1039/C1JM13982G

    17. [17]

      Chen, M. H.; Pan, Z.; Yin, Y. F.; Liu, J.; Liu, M. Y.; Jia, Z. J.; Liang, G. J. Acta Chim. Sinica 2016, 74, 330.  doi: 10.6023/A15120785
       

    18. [18]

      Xu, S.; Ziegler, J.; Nann, T. J. Mater. Chem. 2008, 18, 2653.  doi: 10.1039/b803263g

  • 加载中
    1. [1]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    2. [2]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    3. [3]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    4. [4]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    5. [5]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    6. [6]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    7. [7]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    8. [8]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    9. [9]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    10. [10]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    11. [11]

      Yujia LITianyu WANGFuxue WANGChongchen WANG . Direct Z-scheme MIL-100(Fe)/BiOBr heterojunctions: Construction and photo-Fenton degradation for sulfamethoxazole. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 481-495. doi: 10.11862/CJIC.20230314

    12. [12]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    13. [13]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    14. [14]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    15. [15]

      Qianqian Liu Xing Du Wanfei Li Wei-Lin Dai Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016

Metrics
  • PDF Downloads(29)
  • Abstract views(3873)
  • HTML views(830)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return