Citation: Wang Chaoqiang, Qiu Feilong, Deng Han, Zhang Xiaoyu, He Ping, Zhou Haoshen. Study on the Aqueous Hybrid Supercapacitor Based on Carbon-coated NaTi2(PO4)3 and Activated Carbon Electrode Materials[J]. Acta Chimica Sinica, ;2017, 75(2): 241-246. doi: 10.6023/A16100523 shu

Study on the Aqueous Hybrid Supercapacitor Based on Carbon-coated NaTi2(PO4)3 and Activated Carbon Electrode Materials

  • Corresponding author: Zhou Haoshen, pinghe@nju.edu.cn;hszhou@nju.edu.cn
  • Received Date: 4 October 2016
    Revised Date: 22 February 2017

    Fund Project: PAPD of Jiangsu Higher Education Institutions, and the Project on Union of Industry-Study-Research of Jiangsu Province BY2015069-01Project supported by the National Basic Research Program of China 2014CB932302 National Natural Science Foundation of China BK20160068, BK20140055National Natural Science Foundation of China 21673116, 21403107,21373111

Figures(4)

  • Supercapacitors have been regarded as one of the next-generation energy storage devices because of the high power density, excellent cycling performance, long lifespan and easy maintenance. However, its relatively low specific energy hinders its application in the future. Recently, Na-ion based aqueous hybrid supercapacitors have attracted worldwide attention due to its high energy density, environment friendly and low cost. In our work, the Na-ion aqueous hybrid supercapacitor is constructed with NaTi2(PO4)3/C and commercial activated carbon as electrode materials. NaTi2(PO4)3/C nanoparticles with the size of about 40 nm were synthesized by high-temperature solid state reaction method using the NaTi2(PO4)3/C precursor that was prepared through the solution method with Ti(C4H9O)4, NH4H2PO4, Na2CO3 as the raw materials, and citric acid as the carbon source. The electrochemical tests were performed using 1 mol·L-1 Na2SO4 solution as the electrolyte. The carbon-coated NaTi2(PO4)3 electrode delivers the discharge capacity of 122 mAh·g-1 and shows an excellent cycling stability with the retention of 60% of the initial capacity after 1000 cycles at a 10C rate. The supercapacitor was consisted of NaTi2(PO4)3/C anode, AC cathode and 1 mol·L-1 Na2SO4 electrolyte. And the weight ratio of active materials in cathode and anode was 2.2. Cyclic voltammetry, galvanostatic test were employed to study the electrochemical properties of the supercapacitor. The as-fabricated device was then cycled between 0.15~1.4 V with different current density. Our results show the power density of 121.15 W·kg-1 with specific energy of 18.71 Wh·kg-1 at the current density of 0.5 A·g-1. Moreover, the specific energy and power density goes to 14.13 Wh·kg-1 and 2.42 kW·kg-1 at a higher current density of 10 A·g-1. More importantly, the device showed an excellent cycling stability with the retention of 76% after 1000 cycles at a current density of 1 A·g-1. This research shows the designed hybrid supercapacitor has the potential to be used as auxiliary high-power energy storage device for the practical applications.
  • 加载中
    1. [1]

      Miller, J.-R.; Simon, P. Science 2008, 321, 651.

    2. [2]

      Bohlen, O.; Kowal, J.; Sauer, D.-U. J. Power Sources 2007, 172, 468.

    3. [3]

      Ashtiani, C.; Wright, R.; Hunt, G. J. Power Sources 2006, 154, 561. 

    4. [4]

      Simon, P.; Gogotsi. Y. Nat. Mater. 2008, 7, 845.

    5. [5]

      Zhang, Y.; Feng, H.; Wu, X.-B.; Wang, L.-Z.; Zhang, A.-Q.; Xia, T.-C.; Dong, H.-C.; Li, X.-F.; Zhang, L.-S. Int. J. Hydrogen Energ. 2009, 34, 4889.

    6. [6]

      Conway, B.-E. Electrochemical Supercapacitors, Kluwer Academic/Plunum, New York, 1999.

    7. [7]

      He, Y.-M.; Chen, W.-J.; Gao, C.-T.; Zhou, J.-Y.; Li, X.-D.; Xie, E.-Q. Nanoscale 2013, 5, 8799.

    8. [8]

      Akihiko, Y.; Ichiro, T.; Yasuhiro, T.; Atsushi, N. IEEE Transactions On Components, Hybrids, And Manufacturing Technology, 1987, 10, 1.

    9. [9]

      Honda, Y.; Haramoto, T.; Takeshige, M.; Shiozaki, H.; Kitamura, T.; Ishikawa, M. Electrochem. Solid-State Lett. 2007, 10, A106.

    10. [10]

      Miller, J.-R.; Outlaw, R.-A.; Holloway, B.-C. Science 2010, 329, 1637.

    11. [11]

    12. [12]

    13. [13]

      Burke, A. J. Power Sources 2000, 91, 37. 

    14. [14]

      Wen, L.-Y.; Mi, Y.; Wang, C.-L.; Fang, Y.-G.; Grote, F.-B.; Zhao, H.-P. Small 2014, 10, 3162.

    15. [15]

      Kim, I.-H.; Kim, K.-B. J. Electrochem. Soc. 2006, 153, A383.

    16. [16]

      Shi, Y.; Pan, L.-J.; Liu, B.-R.; Wang, Y.-Q.; Cui, Y.; Bao, Z.-N.; Yu, G.-H. J. Mater. Chem. A 2014, 2, 6086.

    17. [17]

      Cheng, L.; Liu, H.-J.; Zhang, J.-J.; Xiong, H.-M.; Xia, Y.-Y. J. Electrochem. Soc. 2006, 153, A1472.

    18. [18]

      Li, H.-Q.; Cheng, L.; Xia, Y.-Y. Electrochem. Solid-State Lett. 2005, 8, A433.

    19. [19]

      Wang, Y.-G.; Xia, Y.-Y. J. Electrochem. Soc. 2006, 153, A450.

    20. [20]

      Luo, J.-Y.; Xia, Y.-Y. J. Power Sources 2009, 186, 224. 

    21. [21]

      He, P.; Zhang, X.; Wang, Y.-G.; Cheng, L.; Xia, Y.-Y. J. Electrochem. Soc. 2008, 155, A144.

    22. [22]

      He, P.; Luo, J.-Y.; He, J.-X.; Xia, Y.-Y. J. Electrochem. Soc. 2009, 156, A209.

    23. [23]

      He, P.; Liu, J.-L.; Cui, W.-J.; Luo, J.-Y.; Xia, Y.-Y. Electrochim. Acta 2011, 56, 2351.

    24. [24]

      Slater, M.-D.; Kim, D.; Lee, E.; Johnson, C.-S. Adv. Funct. Mater. 2013, 23, 947.

    25. [25]

      Yabuuchi, N.; Kubota, K.; Dahbi, M.; Komaba, S. Chem. Rev. 2014, 114, 11636.

    26. [26]

      Kim, S.-W.; Seo, D.-H.; Ma, X.-H.; Ceder, G.; Kang, K. Adv. Energy Mater. 2012, 2, 710. 

    27. [27]

      Senthilkumar, B.; Ananya, G.; Ashok, P.; Ramaprabhu, S. Electrochim. Acta 2015, 169, 447.

    28. [28]

      Liu, X.; Zhang, N.; Ni, J.; Gao, L.-J. J. Solid State Electrochem. 2013, 17, 1939.

    29. [29]

      Aravindan, V.; Ling, W.-C.; Hartung, S.; Bucher, N.; Madhavi, S. Chem. Asian J. 2014, 9, 878. 

    30. [30]

      Luo, J.-Y.; Cui, W.-J.; He, P.; Xia, Y.-Y. Nat. Chem. 2010, 2, 760.

    31. [31]

      Li, Z.; Ravnsbæk, D.-B.; Xiang, K.; Chiang, Y.-M. Electrochem. Commun. 2014, 44, 12.

    32. [32]

      Luo, J.-Y.; Liu, J.-L.; He, P.; Xia, Y.-Y. Electrochim. Acta 2008, 53, 8128.

  • 加载中
    1. [1]

      Qiqi Li Su Zhang Yuting Jiang Linna Zhu Nannan Guo Jing Zhang Yutong Li Tong Wei Zhuangjun Fan . 前驱体机械压实制备高密度活性炭及其致密电容储能性能. Acta Physico-Chimica Sinica, 2025, 41(3): 2406009-. doi: 10.3866/PKU.WHXB202406009

    2. [2]

      Jianjun LIMingjie RENLili ZHANGLingling ZENGHuiling WANGXiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187

    3. [3]

      Bo YANGGongxuan LÜJiantai MA . Corrosion inhibition of nickel-cobalt-phosphide in water by coating TiO2 layer. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 365-384. doi: 10.11862/CJIC.20240063

    4. [4]

      Guanghui SUIYanyan CHENG . Application of rice husk-based activated carbon-loaded MgO composite for symmetric supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 521-530. doi: 10.11862/CJIC.20240221

    5. [5]

      Ning DINGSiyu WANGShihua YUPengcheng XUDandan HANDexin SHIChao ZHANG . Crystalline and amorphous metal sulfide composite electrode materials with long cycle life: Preparation and performance of hybrid capacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1784-1794. doi: 10.11862/CJIC.20240146

    6. [6]

      Jianbao Mei Bei Li Shu Zhang Dongdong Xiao Pu Hu Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023

    7. [7]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    8. [8]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    9. [9]

      Yuyao Wang Zhitao Cao Zeyu Du Xinxin Cao Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-. doi: 10.3866/PKU.WHXB202406014

    10. [10]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    11. [11]

      Yongzhi LIHan ZHANGGangding WANGYanwei SUILei HOUYaoyu WANG . A two-dimensional metal-organic framework for the determination of nitrofurantoin and nitrofurazone in aqueous solution. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 245-253. doi: 10.11862/CJIC.20240307

    12. [12]

      Yu Guo Zhiwei Huang Yuqing Hu Junzhe Li Jie Xu . 钠离子电池中铁基异质结构负极材料的最新研究进展. Acta Physico-Chimica Sinica, 2025, 41(3): 2311015-. doi: 10.3866/PKU.WHXB202311015

    13. [13]

      Zhuo Wang Xue Bai Kexin Zhang Hongzhi Wang Jiabao Dong Yuan Gao Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002

    14. [14]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    15. [15]

      Rui Li Huan Liu Yinan Jiao Shengjian Qin Jie Meng Jiayu Song Rongrong Yan Hang Su Hengbin Chen Zixuan Shang Jinjin Zhao . 卤化物钙钛矿的单双向离子迁移. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-. doi: 10.3866/PKU.WHXB202311011

    16. [16]

      Guoze Yan Bin Zuo Shaoqing Liu Tao Wang Ruoyu Wang Jinyang Bao Zhongzhou Zhao Feifei Chu Zhengtong Li Yusuke Yamauchi Saad Melhi Xingtao Xu . Opportunities and Challenges of Capacitive Deionization for Uranium Extraction from Seawater. Acta Physico-Chimica Sinica, 2025, 41(4): 100032-. doi: 10.3866/PKU.WHXB202404006

    17. [17]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    18. [18]

      Laiying Zhang Yinghuan Wu Yazi Yu Yecheng Xu Haojie Zhang Weitai Wu . Innovation and Practice of Polymer Chemistry Experiment Teaching for Non-Polymer Major Students of Chemistry: Taking the Synthesis, Solution Property, Optical Performance and Application of Thermo-Sensitive Polymers as an Example. University Chemistry, 2024, 39(4): 213-220. doi: 10.3866/PKU.DXHX202310126

    19. [19]

      Zhening Lou Quanxing Mao Xiaogeng Feng Lei Zhang Xu Xu Yuyang Zhang Xueyan Liu Hongling Kang Dongyang Feng Yongku Li . Practice of Implementing Blended Teaching in Shared Analytical Chemistry Course. University Chemistry, 2024, 39(2): 263-269. doi: 10.3866/PKU.DXHX202308089

    20. [20]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

Metrics
  • PDF Downloads(11)
  • Abstract views(1672)
  • HTML views(309)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return