Citation: Zhang Wen-Qiang, Li Qiu-Yan, Yang Xinyu, Ma Zheng, Wang Huanhuan, Wang Xiao-Jun. Benzothiadiazole Conjugated Metalorganic Framework for Organic Aerobic Oxidation Reactions under Visible Light[J]. Acta Chimica Sinica, ;2017, 75(1): 80-85. doi: 10.6023/A16090496 shu

Benzothiadiazole Conjugated Metalorganic Framework for Organic Aerobic Oxidation Reactions under Visible Light

  • Corresponding author: Li Qiu-Yan, qyli@jsnu.edu.cn Wang Xiao-Jun, xjwang@jsnu.edu.cn
  • Received Date: 17 September 2016

    Fund Project: National Natural Science Foundation of China 21302218National Natural Science Foundation of China 21302072

Figures(7)

  • In the past several years, visible light induced organic transformations via photoredox catalysis have attracted increasing attention from chemists, owing to their mild, environmentally benign and low cost characteristics. Photoredox catalysts including noble metal complexes as well as some organic dyes are often used to promote the transformations under visible light irradiation. However, most of the reactions were conducted in homogeneous system, which makes it difficult to recycle the catalysts for reuse. From a sustainable viewpoint, an ideal photocatalyst should be easily recoverable, reusable and free of precious metals. To this end, photoactive metal-organic frameworks (MOFs) demonstrate unique advantageous features working as novel heterogeneous photocatalytic systems, yet their utilization toward organic transformations promoted by visible light has been limited. Herein we designed and synthesized a benzothiadiazole functionalized TPDC ligand H21 (TPDC=terphenyl-4, 4''-dicarboxylic acid). Briefly, a Suzuki reaction of 4, 7-dibromo-2, 1, 3-benzothiadiazole with 4-(methoxycarbonyl) phenylboronic acid yielded methyl ester precursor, which was hydrolysed by KOH to get the ligand H21 in a high yield. Dimethyl-substituted TPDC H22, on account of its better solubility, was synthesized to replace the original TPDC for preparation of MOF UiO-68 framework. Due to the same length of the two ligands, the mix-and-match synthetic strategy was utilized to construct the benzothiadiazole functionalized UiO-68 topological framework (i.e. MOF UiO-68-S). UiO-68-S was synthesized by heating the mixture of ZrCl4 and a combination of ligands H21 and H22 (1:1 molar ratio) in N, N'-dimethylformamide (DMF) using HAc as an additive at 100℃ for 2 days. Powder X-ray diffraction (XRD) was em-ployed to confirm its crystalline nature and isostructural with the parent UiO-68 framework. Nitrogen sorption experiment at 77 K revealed a typical type I reversible isotherm with Brunauer-Emmett-Teller (BET) surface area up to 1135 m2·g-1, indicating its high porosity. Moreover, the MOF can serve as a highly active photocatalyst for visible light promoted aerobic oxidation reactions, including the selective oxygenation of sulfides and oxidative hydroxylation of arylboronic acids. In addition, UiO-68-S can be recycled at least 5 times without significant loss of catalytic activity and its framework is maintained following the catalytic reaction.
  • 加载中
    1. [1]

      Shaw, M. H.; Twilton, J.; MacMillan, D. W. C. J. Org. Chem. 2016, 81, 6898.  doi: 10.1021/acs.joc.6b01449

    2. [2]

      Nicewicz, D. A.; MacMillan, D. W. C. Science 2008, 322, 77.  doi: 10.1126/science.1161976

    3. [3]

      Xuan, J.; Xiao, W.-J. Angew. Chem., Int. Ed. 2012, 51, 6828.  doi: 10.1002/anie.201200223

    4. [4]

      Shi, L.; Xia, W. Chem. Soc. Rev. 2012, 41, 7687.  doi: 10.1039/c2cs35203f

    5. [5]

      Wang, C.; Lu, Z. Org. Chem. Front. 2015, 2, 179.  doi: 10.1039/C4QO00306C

    6. [6]

      Zhang, G.; Bian, C.; Lei, A. Chin. J. Catal. 2015, 36, 1428.  doi: 10.1016/S1872-2067(15)60885-3

    7. [7]

      Guan, B. C.; Xu, X. L.; Wang, H.; Li, X. N. Chin. J. Org. Chem. 2016, 36, 1564.  doi: 10.6023/cjoc201601012

    8. [8]

      Tan, F.; Xiao, W. J. Acta Chim. Sinica 2015, 73, 85.  doi: 10.6023/A14120860
       

    9. [9]

      Zheng, Y.-W.; Chen, B.; Ye, P.; Feng, K.; Wang, W.; Meng, Q.-Y.; Wu, L.-Z.; Tung, C.-H. J. Am. Chem. Soc. 2016, 138, 10080.  doi: 10.1021/jacs.6b05498

    10. [10]

      Prier, C. K.; Rankic, D. A.; MacMillan, D. W. C. Chem. Rev. 2013, 113, 5322.  doi: 10.1021/cr300503r

    11. [11]

      Nicewicz, D. A.; Nguyen, T. M. ACS Catal. 2014, 4, 355.  doi: 10.1021/cs400956a

    12. [12]

      Meng, Q.-Y.; Zhong, J.-J.; Liu, Q.; Gao, X.-W.; Zhang, H.-H.; Lei, T.; Li, Z.-J.; Feng, K.; Chen, B.; Tung, C.-H.; Wu, L.-Z. J. Am. Chem. Soc. 2013, 135, 19052.  doi: 10.1021/ja408486v

    13. [13]

      Lei, T.; Liu, W.-Q.; Li, J.; Huang, M.-Y.; Yang, B.; Meng, Q.-Y.; Chen, B.; Tung, C.-H.; Wu, L.-Z. Org. Lett. 2016, 18, 2479.  doi: 10.1021/acs.orglett.6b01059

    14. [14]

      Sun, X. Y.; Yu, S. Y. Chin. J. Org. Chem. 2016, 36, 239.  doi: 10.6023/cjoc201512006

    15. [15]

      Xie, Z.; Wang, C.; deKrafft, K. E.; Lin, W. J. Am. Chem. Soc. 2011, 133, 2056.  doi: 10.1021/ja109166b

    16. [16]

      Jana, A.; Mondal, J.; Borah, P.; Mondal, S.; Bhaumik, A.; Zhao, Y. Chem. Commun. 2015, 51, 10746.  doi: 10.1039/C5CC03067F

    17. [17]

      Yu, X.; Cohen, S. M. Chem. Commun. 2015, 51, 9880.  doi: 10.1039/C5CC01697E

    18. [18]

      Rueping, M.; Zoller, J.; Fabry, D. C.; Poscharny, K.; Koenigs, R. M.; Weirich, T. E.; Mayer, J. Chem. Eur. J. 2012, 18, 3478.  doi: 10.1002/chem.201103242

    19. [19]

      Wang, J.; Ma, J.; Li, X.; Li, Y.; Zhang, G.; Zhang, F.; Fan, X. Chem. Commun. 2014, 50, 14237.  doi: 10.1039/C4CC06869F

    20. [20]

      Chen, J.; Cen, J.; Xu, X.; Li, X. Catal. Sci. Technol. 2016, 6, 349.  doi: 10.1039/C5CY01289A

    21. [21]

      Zhou, H.-C.; Long, J. R.; Yaghi, O. M. Chem. Rev. 2012, 112, 673.  doi: 10.1021/cr300014x

    22. [22]

      Cui, Y.; Li, B.; He, H.; Zhou, W.; Chen, B.; Qian, G. Acc. Chem. Res. 2016, 49, 483.  doi: 10.1021/acs.accounts.5b00530

    23. [23]

      Zhao, M.; Ou, S.; Wu, C.-D. Acc. Chem. Res. 2014, 47, 1199.  doi: 10.1021/ar400265x

    24. [24]

      Guo, R.; Bai, J.; Zhang, H.; Xie, Y.; Li, J.-R. Prog. Chem. 2016, 28, 232.
       

    25. [25]

      Huang, G.; Chen, Y. Z.; Jiang, H. L. Acta Chim. Sinica 2016, 74, 113.  doi: 10.6023/A15080547
       

    26. [26]

      Li, P.-Z.; Wang, X.-J.; Tan, S. Y.; Ang, C. Y.; Chen, H.; Liu, J.; Zou, R.; Zhao, Y. Angew. Chem. Int. Ed. 2015, 54, 12748.  doi: 10.1002/anie.201504346

    27. [27]

      Li, P.-Z.; Wang, X.-J.; Liu, J.; Lim, J. S.; Zou, R.; Zhao, Y. J. Am. Chem. Soc. 2016, 138, 2142.  doi: 10.1021/jacs.5b13335

    28. [28]

      Wang, C.; Xie, Z.; deKrafft, K. E.; Lin, W. J. Am. Chem. Soc. 2011, 133, 13445.  doi: 10.1021/ja203564w

    29. [29]

      Toyao, T.; Ueno, N.; Miyahara, K.; Matsui, Y.; Kim, T.-H.; Horiuchi, Y.; Ikeda, H.; Matsuoka, M. Chem. Commun. 2015, 51, 16103.  doi: 10.1039/C5CC06163F

    30. [30]

      Johnson, J. A.; Luo, J.; Zhang, X.; Chen, Y.-S.; Morton, M. D.; Echeverría, E.; Torres, F. E.; Zhang, J. ACS Catal. 2015, 5, 5283.  doi: 10.1021/acscatal.5b00941

    31. [31]

      Johnson, J. A.; Zhang, X.; Reeson, T. C.; Chen, Y.-S.; Zhang, J. J. Am. Chem. Soc. 2014, 136, 15881.  doi: 10.1021/ja5092672

    32. [32]

      Zhang, W.-Q.; Li, Q.-Y.; Zhang, Q.; Lu, Y.; Lu, H.; Wang, W.; Zhao, X.; Wang, X.-J. Inorg. Chem. 2016, 55, 1005.  doi: 10.1021/acs.inorgchem.5b02626

    33. [33]

      Li, Q.-Y.; Ma, Z.; Zhang, W.-Q.; Xu, J.-L.; Wei, W.; Lu, H.; Zhao, X.; Wang, X.-J. Chem. Commun. 2016, 52, 11284.  doi: 10.1039/C6CC04997D

    34. [34]

      Wei, N.; Zhang, Y. R.; Han, Z. B. CrystEngComm 2013, 15, 8883.  doi: 10.1039/c3ce41308j

    35. [35]

      Sk, M.; Biswas, S. CrystEngComm 2016, 18, 3104.  doi: 10.1039/C6CE00421K

    36. [36]

      Song, C.; Ling, Y.; Jin, L.; Zhang, M.; Chen, D.-L.; He, Y. Dalton Trans. 2016, 45, 190.  doi: 10.1039/C5DT02845K

    37. [37]

      Liras, M.; Iglesias, M.; Sánchez, F. Macromolecules 2016, 49, 1666.  doi: 10.1021/acs.macromol.5b02511

    38. [38]

      Lang, X.; Zhao, J.; Chen, X. Angew. Chem. Int. Ed. 2016, 55, 4697.  doi: 10.1002/anie.201600405

    39. [39]

      Wang, H.; Jiang, S. L.; Chen, S. C.; Li, D. D.; Zhang, X. D.; Shao, W.; Sun, X. S.; Xie, J. F.; Zhao, Z.; Zhang, Q.; Tian, Y. P.; Xie, Y. Adv. Mater. 2016, 28, 6940.  doi: 10.1002/adma.201601413

    40. [40]

      Luo, J.; Zhang, X.; Zhang, J. ACS Catal. 2015, 5, 2250.  doi: 10.1021/acscatal.5b00025

    41. [41]

      Zou, Y.-Q.; Chen, J.-R.; Liu, X.-P.; Lu, L.-Q.; Davis, R. L.; Jørgensen, K. A.; Xiao, W.-J. Angew. Chem., Int. Ed. 2012, 51, 784.  doi: 10.1002/anie.201107028

  • 加载中
    1. [1]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    2. [2]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    3. [3]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    4. [4]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    5. [5]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    6. [6]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    7. [7]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    8. [8]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    9. [9]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    10. [10]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    11. [11]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    12. [12]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    13. [13]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    14. [14]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    15. [15]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    16. [16]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    17. [17]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    18. [18]

      Huan ZHANGJijiang WANGGuang FANLong TANGErlin YUEChao BAIXiao WANGYuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291

    19. [19]

      Jie ZHANGXin LIUZhixin LIYuting PEIYuqi YANGHuimin LIZhiqiang LIU . Assembling a luminescence silencing system based on post-synthetic modification strategy: A highly sensitive and selective turn-on metal-organic framework probe for ascorbic acid detection. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 823-833. doi: 10.11862/CJIC.20230310

    20. [20]

      Weichen WANGChunhua GONGJunyong ZHANGYanfeng BIHao XUJingli XIE . Construction of two metal-organic frameworks by rigid bis(triazole) and carboxylate mixed-ligands and their catalytic properties for CO2 cycloaddition reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1377-1386. doi: 10.11862/CJIC.20230415

Metrics
  • PDF Downloads(10)
  • Abstract views(930)
  • HTML views(105)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return