Citation: Sun Xiaoyang, Wang Wenmin, Ma Jing, Yu Shouyun. Halogen-Bond-Promoted Radical Isocyanide Insertion of o-Diisocyanoarenes with Perfluoroalkyl Bromides under Visible Light Irradiation[J]. Acta Chimica Sinica, ;2017, 75(1): 115-118. doi: 10.6023/A16090480 shu

Halogen-Bond-Promoted Radical Isocyanide Insertion of o-Diisocyanoarenes with Perfluoroalkyl Bromides under Visible Light Irradiation

  • Corresponding author: Ma Jing, majing@nju.edu.cn Yu Shouyun, yushouyun@nju.edu.cn
  • Received Date: 7 September 2016

    Fund Project: National Natural Science Foundation of China 21273102National Natural Science Foundation of China 21472084National Natural Science Foundation of China 21672098

Figures(5)

  • A halogen-bond-promoted double radical isocyanide insertion of o-diisocyanoarenes with perfluoroalkyl bromides is reported, in which perfluoroalkyl bromides as halogen bond donors and organic bases as halogen bond acceptors. Fluoroalkyl radicals can be generated by a visible-light-induced single electron transfer (SET) process. Fluoroalkyl radicals are trapped by o-diisocyanoarenes to give 2-fluoroalkylated quinoxaline derivatives. These reactions could be carried out under mild conditions with good chemical yields and broad substrate scope. A broad range of fluoroalkyl bromides with different functionalities could undergo this reaction to give the corresponding quinoxaline derivatives in good yields. A variety of o-diisocyanides could be fluoroalkylated to give quinoxalines under our established conditions. The radical nature of this reaction was confirmed by electron paramagnetic resonance (EPR) experiments using tert-butyl-α-phenylnitrone (PBN) as a spin trap. When PBN was introduced into the reaction mixture, a spectrum signal attributed to the spin adduct C8F17-PBN appeared as a triplet of doublets. Without light and amine, almost no signal was observed. These phenomena strongly suggested that the perfluoroalkyl radical was the key intermediate and the generation of the intermediate heavily relied on the presence of light and amine. A series of deuteration experiments were performed and these results suggested that both the amine and solvent could serve as the hydrogen source and solvent was the major source.
  • 加载中
    1. [1]

      For some reviews on halogen bonds: (a) Metrangolo, P.; Resnati, G. Chem. Eur.J. 2001, 7, 2511. (b) Metrangolo, P.; Neukirch, H.; Pilati, T.; Resnati, G. Acc. Chem. Res. 2005, 38, 386. (c) Metrangolo, P.; Meyer, F.; Pilati, T.; Resnati, G.; Terraneo, G. Angew. Chem., Int. Ed.2008, 47, 6114. (d) Cavallo, G.; Metrangolo, P.; Pilati, T.; Resnati, G.; Sansotera, M.; Terraneo, G. Chem. Soc. Rev. 2010, 39, 3772. (e) Fourmigué, M. Curr. Opin. Solid State Mater. Sci. 2009, 13, 36. (f) Legon, A. C. Phys. Chem. Chem.Phys. 2010, 12, 7736. (g) Lu, Y.; Wang, Y.; Zhu, W. Phys. Chem. Chem. Phys. 2010, 12, 4543. (h) Erdelyi, M. Chem. Soc.Rev. 2012, 41, 3547. (i) Cavallo, G.; Metrangolo, P.; Milani, R.; Pilati, T.; Priimagi, A.; Resnati, G.; Terraneo, G. Chem. Rev. 2016, 116, 2478. For some examples on halogen bonds: (j) Zhang, X.; Zeng, Y.; Li, X.; Meng, L.; Zheng, S. Acta Chim. Sinica 2009, 67, 593. (张雪英, 曾艳丽, 李晓艳, 孟令鹏, 郑世钧, 化学学报, 2009, 67, 593.) (k) Zeng, Y.; Ji, L.; Zheng, S.; Meng, L. Acta Chim. Sinica 2011, 69, 1874. (曾艳丽, 吉丽婷, 郑世钧, 孟令鹏, 化学学报, 2011, 69, 1874.) (l) Fu, Y.; Xiang, Z.; Zhou, J.; Wu, X.; Li, Y.; Jiao, Y. Acta Chim. Sinica 2012, 70, 1847. (付昱, 向子龙, 周军, 吴欣蔚, 李妍, 焦永华, 化学学报, 2012, 70, 1847.).

    2. [2]

      (a) Pimentel, G. C.; McClella, A. L. Annu. Rev. Phys.Chem. 1971, 22, 347. (b) Emsley, J. Chem. Soc.Rev. 1980, 9, 91. (c) Aakeroy, C. B.; Seddon, K. R. Chem.Soc. Rev. 1993, 22, 397. (d) Perrin, C. L.; Nielson, J. B. Annu. Rev. Phys. Chem. 1997, 48, 511. (e) Alkorta, I.; Elguero, J. Chem. Soc. Rev. 1998, 27, 163. (f) Prins, L. J.; Reinhoudt, D. N.; Timmerman, P. Angew.Chem., Int. Ed. 2001, 40, 2382. (g) Steiner, T. Angew. Chem., Int. Ed. 2002, 41, 48. (h) Taylor, M. S.; Jacobsen, E. N. Angew. Chem., Int. Ed.2006, 45, 1520. (i) Yu, X.; Wang, W. Chem. Asian J.2008, 3, 516. (j) Nishio, M.; Umezawa, Y.; Honda, K.; Tsuboyama, S.; Suezawa, H. CrystEngComm 2009, 11, 1757. (k) Hunt, P. A.; Ashworth, C. R.; Matthews, R. P.Chem. Soc. Rev. 2015, 44, 1257.

    3. [3]

      (a) Beale, T. M.; Chudzinski, M. G.; Sarwar, M. G.; Taylor, M. S. Chem.Soc. Rev. 2013, 42, 1667. (b) Desiraju, G. R.; Ho, P. S.; Kloo, L.; Legon, A. C.; Marquardt, R.; Metrangolo, P.; Politzer, P.; Resnati, G.; Rissanen, K. Pure Appl. Chem. 2013, 85, 1711.

    4. [4]

      (a) Mukherjee, A.; Tothadi, S.; Desiraju, G. R. Acc. Chem.Res. 2014, 47, 2514. (b) Berger, G.; Soubhye, J.; Meyer, F. Polym. Chem. 2015, 6, 3559.

    5. [5]

      (a) Priimagi, A.; Cavallo, G.; Metrangolo, P.; Resnati, G. Acc.Chem. Res. 2013, 46, 2686. (b) Gilday, L. C.; Robinson, S. W.; Barendt, T. A.; Langton, M. J.; Mullaney, B. R.; Beer, P. D. Chem.Rev. 2015, 115, 7118.

    6. [6]

      (a) Caronna, T.; Liantonio, R.; Logothetis, T. A.; Metrangolo, P.; Pilati, T.; Resnati, G. J. Am. Chem. Soc. 2004, 126, 4500. (b) Nguyen, H. L.; Horton, P. N.; Hursthouse, M. B.; Legon, A. C.; Bruce, D. W. J. Am. Chem. Soc. 2004, 126, 16. (c) Cariati, E.; Forni, A.; Biella, S.; Metrangolo, P.; Meyer, F.; Resnati, G.; Righetto, S.; Tordin, E.; Ugo, R. Chem. Commun. 2007, 2590. (d) Lu, Y.; Shi, T.; Wang, Y.; Yang, H.; Yan, X.; Luo, X.; Jiang, H.; Zhu, W. J. Med. Chem. 2009, 52, 2854. (e) Lu, Y.; Liu, Y.; Xu, Z.; Li, H.; Liu, H.; Zhu, W. Expert Opin. Drug Dis.2012, 7, 375. (f) Xu, Z.; Yang, Z.; Liu, Y.; Lu, Y.; Chen, K.; Zhu, W. J. Chem. Inf. Model. 2014, 54, 69.

    7. [7]

      (a) Bruckmann, A.; Pena, M. A.; Bolm, C. Synlett 2008, 2008, 900. (b) Bew, S. P.; Fairhurst, S. A.; Hughes, D. L.; Legentil, L.; Liddle, J.; Pesce, P.; Nigudkar, S.; Wilson, M. A. Org. Lett.2009, 11, 4552. (c) Dordonne, S.; Crousse, B.; Bonnet-Delpon, D.; Legros, J. Chem. Commun. 2011, 47, 5855. (d) Walter, S. M.; Kniep, F.; Herdtweck, E.; Huber, S. M. Angew. Chem., Int. Ed. 2011, 50, 7187. (e) Kniep, F.; Jungbauer, S. H.; Zhang, Q.; Walter, S. M.; Schindler, S.; Schnapperelle, I.; Herdtweck, E.; Huber, S. M. Angew. Chem., Int. Ed. 2013, 52, 7028. (f) Castelli, R.; Schindler, S.; Walter, S. M.; Kniep, F.; Overkleeft, H. S.; Van der Marel, G. A.; Huber, S. M.; Codée, J. D. C. Chem.Asian J. 2014, 9, 2095. (g) He, W.; Ge, Y.-C.; Tan, C.-H. Org.Lett. 2014, 16, 3244. (h) Jungbauer, S. H.; Walter, S. M.; Schindler, S.; Rout, L.; Kniep, F.; Huber, S. M. Chem. Commun. 2014, 50, 6281. (i) Jungbauer, S. H.; Huber, S. M. J. Am. Chem.Soc. 2015, 137, 12110. (j) Saito, M.; Tsuji, N.; Kobayashi, Y.; Takemoto, Y. Org. Lett. 2015, 17, 3000. (k) Sladojevich, F.; McNeill, E.; B rgel, J.; Zheng, S.-L.; Ritter, T. Angew.Chem., Int. Ed. 2015, 54, 3712. (l) Takeda, Y.; Hisakuni, D.; Lin, C.-H.; Minakata, S. Org.Lett. 2015, 17, 318. For a comprehensive review, see: (m) Bulfield, D.; Huber, S. M. Chem. Eur. J. 2016, 41, 14434.

    8. [8]

      (a) Cheng, Y.; Yuan, X.; Ma, J.; Yu, S. Chem. Eur. J.2015, 21, 8355. (b) Cheng, Y.; Yu, S. Org. Lett. 2016, 18, 2962. (c) Sun, X.; Wang, W.; Li, Y.; Ma, J.; Yu, S. Org. Lett.2016, 18, 4638.

    9. [9]

      Leifert, D.; Studer, A. Angew. Chem., Int. Ed.2016, 55, 11660.  doi: 10.1002/anie.v55.38

    10. [10]

      The X-ray crystallographic coordinates for structures reported in this Article have been deposited at the Cambridge Crystallographic Data Centre (CCDC), under deposition numbers 1476520 (3m') and 1476521 (3n). These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via http://www. ccdc.cam. ac.uk/data_request/cif.

    11. [11]

      (a) Janzen, E. G.; Blackburn, B. J. J. Am. Chem.Soc. 1968, 90, 5909. (b) Haire, L. D.; Krygsman, P. H.; Janzen, E. G.; Oehler, U. M. J. Org. Chem. 1988, 53, 4535. (c) Rehorek, D. Chem. Soc. Rev. 1991, 20, 341. (d) Zhang, C.-P.; Wang, H.; Klein, A.; Biewer, C.; Stirnat, K.; Yamaguchi, Y.; Xu, L.; Gomez-Benitez, V.; Vicic, D. A. J. Am. Chem. Soc.2013, 135, 8141.

    12. [12]

      Julià, L.; Bosch, M. P.; Rodriguez, S.; Guerrero, A. J. Org.Chem. 2000, 65, 5098.  doi: 10.1021/jo9918605

  • 加载中
    1. [1]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    2. [2]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    3. [3]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    4. [4]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

    5. [5]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    6. [6]

      Jiajia Li Xiangyu Zhang Zhihan Yuan Zhengyang Qian Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073

    7. [7]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    8. [8]

      Jie Li Huida Qian Deyang Pan Wenjing Wang Daliang Zhu Zhongxue Fang . Efficient Synthesis of Anethaldehyde Induced by Visible Light. University Chemistry, 2024, 39(4): 343-350. doi: 10.3866/PKU.DXHX202310076

    9. [9]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    10. [10]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    11. [11]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    12. [12]

      Zijian Zhao Yanxin Shi Shicheng Li Wenhong Ruan Fang Zhu Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094

    13. [13]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    14. [14]

      Chengqian Mao Yanghan Chen Haotong Bai Junru Huang Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, 2024, 39(5): 354-362. doi: 10.3866/PKU.DXHX202312014

    15. [15]

      Rui Li Jiayu Zhang Anyang Li . Two Levels of Understanding of Chemical Bonds: a Case of the Bonding Model of Hypervalent Molecules. University Chemistry, 2024, 39(2): 392-398. doi: 10.3866/PKU.DXHX202308051

    16. [16]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    17. [17]

      Linhan Tian Changsheng Lu . Discussion on Sextuple Bonding in Diatomic Motifs of Chromium Family Elements. University Chemistry, 2024, 39(8): 395-402. doi: 10.3866/PKU.DXHX202401056

    18. [18]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    19. [19]

      Daojuan Cheng Fang Fang . Exploration and Implementation of Science-Education Integration in Organic Chemistry Teaching for Pharmacy Majors: A Case Study on Nucleophilic Substitution Reactions of Alkyl Halides. University Chemistry, 2024, 39(11): 72-78. doi: 10.12461/PKU.DXHX202403105

    20. [20]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

Metrics
  • PDF Downloads(8)
  • Abstract views(1624)
  • HTML views(245)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return