Citation: Sun Xiaoyang, Wang Wenmin, Ma Jing, Yu Shouyun. Halogen-Bond-Promoted Radical Isocyanide Insertion of o-Diisocyanoarenes with Perfluoroalkyl Bromides under Visible Light Irradiation[J]. Acta Chimica Sinica, ;2017, 75(1): 115-118. doi: 10.6023/A16090480 shu

Halogen-Bond-Promoted Radical Isocyanide Insertion of o-Diisocyanoarenes with Perfluoroalkyl Bromides under Visible Light Irradiation

  • Corresponding author: Ma Jing, majing@nju.edu.cn Yu Shouyun, yushouyun@nju.edu.cn
  • Received Date: 7 September 2016

    Fund Project: National Natural Science Foundation of China 21273102National Natural Science Foundation of China 21472084National Natural Science Foundation of China 21672098

Figures(5)

  • A halogen-bond-promoted double radical isocyanide insertion of o-diisocyanoarenes with perfluoroalkyl bromides is reported, in which perfluoroalkyl bromides as halogen bond donors and organic bases as halogen bond acceptors. Fluoroalkyl radicals can be generated by a visible-light-induced single electron transfer (SET) process. Fluoroalkyl radicals are trapped by o-diisocyanoarenes to give 2-fluoroalkylated quinoxaline derivatives. These reactions could be carried out under mild conditions with good chemical yields and broad substrate scope. A broad range of fluoroalkyl bromides with different functionalities could undergo this reaction to give the corresponding quinoxaline derivatives in good yields. A variety of o-diisocyanides could be fluoroalkylated to give quinoxalines under our established conditions. The radical nature of this reaction was confirmed by electron paramagnetic resonance (EPR) experiments using tert-butyl-α-phenylnitrone (PBN) as a spin trap. When PBN was introduced into the reaction mixture, a spectrum signal attributed to the spin adduct C8F17-PBN appeared as a triplet of doublets. Without light and amine, almost no signal was observed. These phenomena strongly suggested that the perfluoroalkyl radical was the key intermediate and the generation of the intermediate heavily relied on the presence of light and amine. A series of deuteration experiments were performed and these results suggested that both the amine and solvent could serve as the hydrogen source and solvent was the major source.
  • 加载中
    1. [1]

      For some reviews on halogen bonds: (a) Metrangolo, P.; Resnati, G. Chem. Eur.J. 2001, 7, 2511. (b) Metrangolo, P.; Neukirch, H.; Pilati, T.; Resnati, G. Acc. Chem. Res. 2005, 38, 386. (c) Metrangolo, P.; Meyer, F.; Pilati, T.; Resnati, G.; Terraneo, G. Angew. Chem., Int. Ed.2008, 47, 6114. (d) Cavallo, G.; Metrangolo, P.; Pilati, T.; Resnati, G.; Sansotera, M.; Terraneo, G. Chem. Soc. Rev. 2010, 39, 3772. (e) Fourmigué, M. Curr. Opin. Solid State Mater. Sci. 2009, 13, 36. (f) Legon, A. C. Phys. Chem. Chem.Phys. 2010, 12, 7736. (g) Lu, Y.; Wang, Y.; Zhu, W. Phys. Chem. Chem. Phys. 2010, 12, 4543. (h) Erdelyi, M. Chem. Soc.Rev. 2012, 41, 3547. (i) Cavallo, G.; Metrangolo, P.; Milani, R.; Pilati, T.; Priimagi, A.; Resnati, G.; Terraneo, G. Chem. Rev. 2016, 116, 2478. For some examples on halogen bonds: (j) Zhang, X.; Zeng, Y.; Li, X.; Meng, L.; Zheng, S. Acta Chim. Sinica 2009, 67, 593. (张雪英, 曾艳丽, 李晓艳, 孟令鹏, 郑世钧, 化学学报, 2009, 67, 593.) (k) Zeng, Y.; Ji, L.; Zheng, S.; Meng, L. Acta Chim. Sinica 2011, 69, 1874. (曾艳丽, 吉丽婷, 郑世钧, 孟令鹏, 化学学报, 2011, 69, 1874.) (l) Fu, Y.; Xiang, Z.; Zhou, J.; Wu, X.; Li, Y.; Jiao, Y. Acta Chim. Sinica 2012, 70, 1847. (付昱, 向子龙, 周军, 吴欣蔚, 李妍, 焦永华, 化学学报, 2012, 70, 1847.).

    2. [2]

      (a) Pimentel, G. C.; McClella, A. L. Annu. Rev. Phys.Chem. 1971, 22, 347. (b) Emsley, J. Chem. Soc.Rev. 1980, 9, 91. (c) Aakeroy, C. B.; Seddon, K. R. Chem.Soc. Rev. 1993, 22, 397. (d) Perrin, C. L.; Nielson, J. B. Annu. Rev. Phys. Chem. 1997, 48, 511. (e) Alkorta, I.; Elguero, J. Chem. Soc. Rev. 1998, 27, 163. (f) Prins, L. J.; Reinhoudt, D. N.; Timmerman, P. Angew.Chem., Int. Ed. 2001, 40, 2382. (g) Steiner, T. Angew. Chem., Int. Ed. 2002, 41, 48. (h) Taylor, M. S.; Jacobsen, E. N. Angew. Chem., Int. Ed.2006, 45, 1520. (i) Yu, X.; Wang, W. Chem. Asian J.2008, 3, 516. (j) Nishio, M.; Umezawa, Y.; Honda, K.; Tsuboyama, S.; Suezawa, H. CrystEngComm 2009, 11, 1757. (k) Hunt, P. A.; Ashworth, C. R.; Matthews, R. P.Chem. Soc. Rev. 2015, 44, 1257.

    3. [3]

      (a) Beale, T. M.; Chudzinski, M. G.; Sarwar, M. G.; Taylor, M. S. Chem.Soc. Rev. 2013, 42, 1667. (b) Desiraju, G. R.; Ho, P. S.; Kloo, L.; Legon, A. C.; Marquardt, R.; Metrangolo, P.; Politzer, P.; Resnati, G.; Rissanen, K. Pure Appl. Chem. 2013, 85, 1711.

    4. [4]

      (a) Mukherjee, A.; Tothadi, S.; Desiraju, G. R. Acc. Chem.Res. 2014, 47, 2514. (b) Berger, G.; Soubhye, J.; Meyer, F. Polym. Chem. 2015, 6, 3559.

    5. [5]

      (a) Priimagi, A.; Cavallo, G.; Metrangolo, P.; Resnati, G. Acc.Chem. Res. 2013, 46, 2686. (b) Gilday, L. C.; Robinson, S. W.; Barendt, T. A.; Langton, M. J.; Mullaney, B. R.; Beer, P. D. Chem.Rev. 2015, 115, 7118.

    6. [6]

      (a) Caronna, T.; Liantonio, R.; Logothetis, T. A.; Metrangolo, P.; Pilati, T.; Resnati, G. J. Am. Chem. Soc. 2004, 126, 4500. (b) Nguyen, H. L.; Horton, P. N.; Hursthouse, M. B.; Legon, A. C.; Bruce, D. W. J. Am. Chem. Soc. 2004, 126, 16. (c) Cariati, E.; Forni, A.; Biella, S.; Metrangolo, P.; Meyer, F.; Resnati, G.; Righetto, S.; Tordin, E.; Ugo, R. Chem. Commun. 2007, 2590. (d) Lu, Y.; Shi, T.; Wang, Y.; Yang, H.; Yan, X.; Luo, X.; Jiang, H.; Zhu, W. J. Med. Chem. 2009, 52, 2854. (e) Lu, Y.; Liu, Y.; Xu, Z.; Li, H.; Liu, H.; Zhu, W. Expert Opin. Drug Dis.2012, 7, 375. (f) Xu, Z.; Yang, Z.; Liu, Y.; Lu, Y.; Chen, K.; Zhu, W. J. Chem. Inf. Model. 2014, 54, 69.

    7. [7]

      (a) Bruckmann, A.; Pena, M. A.; Bolm, C. Synlett 2008, 2008, 900. (b) Bew, S. P.; Fairhurst, S. A.; Hughes, D. L.; Legentil, L.; Liddle, J.; Pesce, P.; Nigudkar, S.; Wilson, M. A. Org. Lett.2009, 11, 4552. (c) Dordonne, S.; Crousse, B.; Bonnet-Delpon, D.; Legros, J. Chem. Commun. 2011, 47, 5855. (d) Walter, S. M.; Kniep, F.; Herdtweck, E.; Huber, S. M. Angew. Chem., Int. Ed. 2011, 50, 7187. (e) Kniep, F.; Jungbauer, S. H.; Zhang, Q.; Walter, S. M.; Schindler, S.; Schnapperelle, I.; Herdtweck, E.; Huber, S. M. Angew. Chem., Int. Ed. 2013, 52, 7028. (f) Castelli, R.; Schindler, S.; Walter, S. M.; Kniep, F.; Overkleeft, H. S.; Van der Marel, G. A.; Huber, S. M.; Codée, J. D. C. Chem.Asian J. 2014, 9, 2095. (g) He, W.; Ge, Y.-C.; Tan, C.-H. Org.Lett. 2014, 16, 3244. (h) Jungbauer, S. H.; Walter, S. M.; Schindler, S.; Rout, L.; Kniep, F.; Huber, S. M. Chem. Commun. 2014, 50, 6281. (i) Jungbauer, S. H.; Huber, S. M. J. Am. Chem.Soc. 2015, 137, 12110. (j) Saito, M.; Tsuji, N.; Kobayashi, Y.; Takemoto, Y. Org. Lett. 2015, 17, 3000. (k) Sladojevich, F.; McNeill, E.; B rgel, J.; Zheng, S.-L.; Ritter, T. Angew.Chem., Int. Ed. 2015, 54, 3712. (l) Takeda, Y.; Hisakuni, D.; Lin, C.-H.; Minakata, S. Org.Lett. 2015, 17, 318. For a comprehensive review, see: (m) Bulfield, D.; Huber, S. M. Chem. Eur. J. 2016, 41, 14434.

    8. [8]

      (a) Cheng, Y.; Yuan, X.; Ma, J.; Yu, S. Chem. Eur. J.2015, 21, 8355. (b) Cheng, Y.; Yu, S. Org. Lett. 2016, 18, 2962. (c) Sun, X.; Wang, W.; Li, Y.; Ma, J.; Yu, S. Org. Lett.2016, 18, 4638.

    9. [9]

      Leifert, D.; Studer, A. Angew. Chem., Int. Ed.2016, 55, 11660.  doi: 10.1002/anie.v55.38

    10. [10]

      The X-ray crystallographic coordinates for structures reported in this Article have been deposited at the Cambridge Crystallographic Data Centre (CCDC), under deposition numbers 1476520 (3m') and 1476521 (3n). These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via http://www. ccdc.cam. ac.uk/data_request/cif.

    11. [11]

      (a) Janzen, E. G.; Blackburn, B. J. J. Am. Chem.Soc. 1968, 90, 5909. (b) Haire, L. D.; Krygsman, P. H.; Janzen, E. G.; Oehler, U. M. J. Org. Chem. 1988, 53, 4535. (c) Rehorek, D. Chem. Soc. Rev. 1991, 20, 341. (d) Zhang, C.-P.; Wang, H.; Klein, A.; Biewer, C.; Stirnat, K.; Yamaguchi, Y.; Xu, L.; Gomez-Benitez, V.; Vicic, D. A. J. Am. Chem. Soc.2013, 135, 8141.

    12. [12]

      Julià, L.; Bosch, M. P.; Rodriguez, S.; Guerrero, A. J. Org.Chem. 2000, 65, 5098.  doi: 10.1021/jo9918605

  • 加载中
    1. [1]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    2. [2]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    3. [3]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

    4. [4]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    5. [5]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    6. [6]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    7. [7]

      Jiajia Li Xiangyu Zhang Zhihan Yuan Zhengyang Qian Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073

    8. [8]

      Xinzhe HUANGLihui XUYue YANGLiming WANGZhangyong LIUZhongjian WANG . Preparation and visible light responsive photocatalytic properties of BiSbO4/BiOBr. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 284-292. doi: 10.11862/CJIC.20240212

    9. [9]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    10. [10]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    11. [11]

      Jie Li Huida Qian Deyang Pan Wenjing Wang Daliang Zhu Zhongxue Fang . Efficient Synthesis of Anethaldehyde Induced by Visible Light. University Chemistry, 2024, 39(4): 343-350. doi: 10.3866/PKU.DXHX202310076

    12. [12]

      Min LIUHuapeng RUANZhongtao FENGXue DONGHaiyan CUIXinping WANG . Neutral boron-containing radical dimers. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 123-130. doi: 10.11862/CJIC.20240362

    13. [13]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    14. [14]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    15. [15]

      Zijian Zhao Yanxin Shi Shicheng Li Wenhong Ruan Fang Zhu Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094

    16. [16]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    17. [17]

      Qin Li Huihui Zhang Huajun Gu Yuanyuan Cui Ruihua Gao Wei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 100031-. doi: 10.3866/PKU.WHXB202402016

    18. [18]

      Yuan GAOYiming LIUChunhui WANGZhe HANChaoyue FANJie QIU . A hexanuclear cerium oxo cluster stabilized by furoate: Synthesis, structure, and remarkable ability to scavenge hydroxyl radicals. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 491-498. doi: 10.11862/CJIC.20240271

    19. [19]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    20. [20]

      Rui Li Jiayu Zhang Anyang Li . Two Levels of Understanding of Chemical Bonds: a Case of the Bonding Model of Hypervalent Molecules. University Chemistry, 2024, 39(2): 392-398. doi: 10.3866/PKU.DXHX202308051

Metrics
  • PDF Downloads(8)
  • Abstract views(1766)
  • HTML views(266)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return